• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hydrogen Generation for Fuel Cells in Auxiliary Power Systems

Nilsson, Marita January 2009 (has links)
Heavy-duty trucks are in idle operation during long periods of time, providing the vehicles with electricity via the alternator at standstill. Idling trucks contribute to large amounts of emissions and high fuel consumption as a result of the low efficiency from fuel to electricity. Auxiliary power units, which operate independently of the main engine, are promising alternatives for supplying trucks with electricity. Fuel cell-based auxiliary power units could offer high efficiencies and low noise. The hydrogen required for the fuel cell could be generated in an onboard fuel reformer using the existing truck fuel. The work presented in this thesis concerns hydrogen generation from transportation fuels by autothermal reforming focusing on the application of fuel cell auxiliary power units. Diesel and dimethyl ether have been the fuels of main focus. The work includes reactor design aspects, preparation and testing of reforming catalysts including characterization studies and evaluation of operating conditions. The thesis is a summary of five scientific papers. Major issues for succeeding with diesel reforming are fuel injection, reactant mixing and achieving fuel cell quality reformate. The results obtained in this work contribute to the continued research and development of diesel reforming catalysts and processes. A diesel reformer, designed to generate hydrogen to feed a 5 kWe polymer electrolyte fuel cell has been evaluated for autothermal reforming of commercial diesel fuel. The operational results show the feasibility of the design to generate hydrogen-rich gases from complex diesel fuel mixtures and have, together with CFD calculations, been supportive in the development of a new improved reformer design. In addition to diesel, the reforming reactor design was shown to run satisfactorily with other hydrocarbon mixtures, such as gasoline and E85. Rh-based catalysts were used in the studies and exhibit high performance during diesel reforming without coke formation on the catalyst surface. An interesting finding is that the addition of Mn to Rh catalysts appears to improve activity during diesel reforming. Therefore, Mn could be considered to be used to decrease the noble metal loading, and thereby the cost, of diesel reforming catalysts. Dimethyl ether is a potential diesel fuel alternative and has lately been considered as hydrogen carrier for fuel cells in truck auxiliary power units. The studies related to dimethyl ether have been focused on the evaluation of Pd-based catalysts and the influence of operating parameters for autothermal reforming. PdZn-based catalysts were found to be very promising for DME reforming, generating product gases with high selectivity to hydrogen and carbon dioxide. The high product selectivity is correlated to PdZn interactions, leading to decreased activity of decomposition reactions. Auxiliary power systems fueled with DME could, therefore, make possible fuel processors with very low complexity compared to diesel-fueled systems. The work presented in this thesis has enhanced our understanding of diesel and DME reforming and will serve as basis for future studies. / QC 20100804
2

Hydrogen generation from dimethyl ether by autothermal reforming

Nilsson, Marita January 2007 (has links)
<p>Heavy-duty trucks are in idle operation during long periods of time, providing the vehicles with electricity via the alternator at standstill. Idling trucks contribute to large amounts of emissions and high fuel consumption as a result of the low efficiency from fuel to electricity. Truck manufacturers are working to develop equipment using auxiliary power units to supply the trucks with electricity, which operate independently of the main engine. Fuel cell-based auxiliary power units could offer high efficiencies and low noise and vibrations. The hydrogen required for the fuel cell can be generated in an onboard fuel reformer. This thesis is devoted to hydrogen generation from dimethyl ether, DME, by autothermal reforming focusing on the application of fuel cell auxiliary power units. In the search for alternative fuels, DME has lately been identified as a promising diesel substitute.</p><p>The first part of the thesis gives an introduction to the field of DME reforming with a literature survey of recent studies within the area. Included are also results from thermodynamic equilibrium calculations.</p><p>In the following parts of the thesis, experimental studies on autothermal reforming of DME are presented. A reformer constructed to generate hydrogen to feed a 5 kW<sub>e</sub> polymer electrolyte fuel cell is evaluated with emphasis on trying to work close to a practically viable process, i.e. without external heating and using gas mixtures resembling real conditions. Additional experiments have been conducted to investigate the use of catalytic oxidation of dimethyl ether as a heat source during startup. The results of these studies are presented in Paper I.</p><p>In the second experimental study of this thesis, which is presented in Paper II, Pd-based monolithic catalysts are evaluated at small scale for use in autothermal reforming of DME. A screening of various catalyst materials has been performed followed by a study of the influence on the product composition of varying operating parameters such as oxygen-to-DME ratio, steam-to-DME ratio, and temperature.</p>
3

Hydrogen generation from dimethyl ether by autothermal reforming

Nilsson, Marita January 2007 (has links)
Heavy-duty trucks are in idle operation during long periods of time, providing the vehicles with electricity via the alternator at standstill. Idling trucks contribute to large amounts of emissions and high fuel consumption as a result of the low efficiency from fuel to electricity. Truck manufacturers are working to develop equipment using auxiliary power units to supply the trucks with electricity, which operate independently of the main engine. Fuel cell-based auxiliary power units could offer high efficiencies and low noise and vibrations. The hydrogen required for the fuel cell can be generated in an onboard fuel reformer. This thesis is devoted to hydrogen generation from dimethyl ether, DME, by autothermal reforming focusing on the application of fuel cell auxiliary power units. In the search for alternative fuels, DME has lately been identified as a promising diesel substitute. The first part of the thesis gives an introduction to the field of DME reforming with a literature survey of recent studies within the area. Included are also results from thermodynamic equilibrium calculations. In the following parts of the thesis, experimental studies on autothermal reforming of DME are presented. A reformer constructed to generate hydrogen to feed a 5 kWe polymer electrolyte fuel cell is evaluated with emphasis on trying to work close to a practically viable process, i.e. without external heating and using gas mixtures resembling real conditions. Additional experiments have been conducted to investigate the use of catalytic oxidation of dimethyl ether as a heat source during startup. The results of these studies are presented in Paper I. In the second experimental study of this thesis, which is presented in Paper II, Pd-based monolithic catalysts are evaluated at small scale for use in autothermal reforming of DME. A screening of various catalyst materials has been performed followed by a study of the influence on the product composition of varying operating parameters such as oxygen-to-DME ratio, steam-to-DME ratio, and temperature. / QC 20101115
4

Edelmetall beladene Indiumoxid Aerogelkatalysatoren für die Methanol Dampfreformierung

Thoni, Lukas Johannes 20 November 2023 (has links)
Im Zentrum dieser Dissertation stehen die Systeme von Platin und Palladium beladenen Indiumoxid-Aerogelen hinsichtlich ihrer Anwendbarkeit als Katalysatoren für die Methanol-Dampfreformierung. Diese Reaktion ermöglicht aus der Umsetzung von Wasser und Methanol die Produktion von Wasserstoff für Brennstoffzellen und kann so einen Beitrag für eine nachhaltigere Energiewirtschaft leisten. Methanol reiht sich in eine Kandidatenliste der aussichtsreichsten Speichermoleküle für elektrische Energie in chemischen Bindungen ein. Im ersten Schritt wird dazu zunächst Wasserstoff aus Stromüberschüssen von erneuerbaren Energien gewonnen. Eine effiziente Einspeicherung und Freisetzung von Wasserstoff in Methanol im Kreislauf wird jedoch nur in Kombination mit Hochleistungskatalysatoren vorstellbar. Diese unterdrücken Nebenprodukte, beeinflussen das Reaktionsgleichgewicht und können so die gewünschten Reaktionen effizienter machen. Aus diesem Grund werden in dieser Arbeit die Konzepte des Einsatzes von Aerogelkatalysatoren beleuchtet und diskutiert. Zunächst werden Aerogele untersucht, welche über eine Epoxid-assistierte Gelierung synthethisiert wurden. Dem gegenüber gestellt werden Aerogele, welche über eine neu entwickelte wässrige Syntheseroute hergestellt werden konnten. Über die Epoxidmethode und die wässrige Synthese konnten Aerogele mit Stegbreiten um 5 nm und Oberflächen bis zu 200 m2 g-1 hergestellt werden. Es konnte gezeigt werden, dass über die wässrige Synthese reine Indiumoxid Aerogele mit vergleichbaren Eigenschaften erzeugt werden können. Am Beispiel der wässrigen Synthese werden anschließend die Ergebnisse zum Experiment Design über Bayesianische Optimierung erläutert. Mittels dieser Maschinen gestützten Methodik konnte das Verständnis von Einflussparameter wie Salzen, Temperatur, Nichtlösungsmitteln und Stabilistoren weiter gefördert werden. Ebenso konnten Einblicke in diese noch jüngere Methodik der Experimentplanung gewonnen werden. Die Einführung von Trägermaterialien wurde in dieser Arbeit am Beispiel von meso- und makroporösem Silica gezeigt. Zur Beladung wurden auch hier neue Wege in der Methode über Aggregate aus Zinkoxid und Palladium Nanopartikeln eingeschlagen. Weiterhin haben Trägermaterialien ebenfalls das Potenzial den finalen Katalysatorpreis zu senken und die Temperaturstabilität bei gleichzeitigem Erhalten von spezifischen Oberflächen von bis zu 450 m2 g-1 weiter zu erhöhen. Obwohl Aerogele nun schon länger als Wundermaterialien gelten, wurde der breite Einsatz in größerem Maßstabe durch die aufwendige Trocknungstechnik eingeschränkt. Dieser Sachverhalt wird untersucht, indem unterschiedliche Trocknungstechniken gegenübergestellt werden, um deren Praktikabilität und Einfluss auf Platin beladene Indiumoxid-Aerogele zu diskutieren. Über die Versuche von verschiedenen Trocknungsmethoden konnte gezeigt werden, dass die Trocknung über Verdampfung bei Umgebungsbedingungen mit der klassischen superkritischen Trocknung konkurrieren kann. Für eine Katalysatorentwicklung bedeutet dies eine verbesserte Wirtschaftlichkeit, sowie eine größere Skalierbarkeit im Trocknungsschritt, welcher ansonsten durch Autoklaventechnik begrenzt ist. Da die Möglichkeiten der Trocknung jedoch im Zusammenhang mit dem Material des Gels und der Stabilität dessen befinden, kann daraus kein universeller Schluss für andere Gelsysteme gezogen werden. Zum Einsatz als Katalysator bedarf es schließlich noch einiger Vorbehandlungsschritte, welche bezüglich reiner Indiumoxid-Aerogele und im Kontext der mit Platin und Palladium beladenen Indiumoxid-Aerogele detaillierter beleuchtet werden. Dabei wird hauptsächlich der Einfluss der Temperatur in Kombination mit oxidativer oder reduktiver Atmosphäre auf die Struktur und Oberfläche der Proben untersucht. Final wird der Einsatz der Aerogelkatalysatoren im Reaktor der Methanol-Dampfreformierung beleuchtet, welcher von Kooperationspartnern des Instituts „Materialien für innovative Energiekonzepte“ unter der Leitung von Prof. Marc Armbrüster der TU Chemnitz durchgeführt wurde. In der Temperaturbehandlung und Aktivierung und Katalyse der Aerogele durchlaufen diese Veränderungen der Netzwerkstruktur in Form von Stegbreitenvergrößerung begleitet von einer Reduktion der spezifischen Oberfläche. Die Nanoskaligkeit der betrachteten Aerogele bleibt dabei jedoch erhalten und es konnte gezeigt werden, dass die fragilen Aerogele Reaktorbedingungen standhalten können und nicht zum massiven Festkörper kollabieren. Das System InPt/In2O3 demonstriert die bisher jemals höchste gemessene Selektivität bei gleichzeitig hoher Aktivität des Katalysators in der Methanol-Dampfreformierung zum Stand dieser Arbeit. Ermöglicht wird dies durch die Verknüpfung der intrinsischen Material- mit den Aerogeleigenschaften. Das Zusammenspiel einer großen Oberfläche und der Nanoskaligkeit ermöglicht eine große Querschnittsfläche der intermetallischen Phase mit dem Oxid.:Inhaltsverzeichnis I Abkürzungen V Einleitung 1 1 Stand in der Literatur 3 1.1 Methanol-Dampfreformierung und Energiespeicherung 3 1.2 Metalle auf Trägeroxiden 4 1.3 Trocknung von nassen Gelen 7 1.4 Maschinelles Lernen und Experimentplanung 9 2 Experimentalteil 15 2.1 Epoxidmethode 15 2.1.1 Standardsynthese Indiumoxid-Aerogel 15 2.1.2 Synthese von reinen Indiumoxid-Aerogel Monolithen 15 2.1.3 Synthese von 10 m% Pt beladenen Indiumoxidgelen 15 2.1.4 Synthese von 10 m% Pd beladenen Indiumoxidgelen 16 2.2 Wässrige Synthese 16 2.2.1 Wässriges Indiumhydroxid Sol 16 2.3 Maschinelles Lernen 17 2.3.1 Optimierung nach Gelvolumen 17 2.4 Temperaturbehandlung 17 2.5 Trägermaterialien 18 2.5.1 Silica mit Makroporen durch Emulsionstemplat 18 2.5.2 Synthese von Polystyrolmikrosphären 18 2.5.3 Silica mit Makroporen durch Polystyroltemplat JK 019 18 2.5.4 Zinkoxid Sol 19 2.5.5 Pd/ZnO Aggregate 19 2.6 Trocknungsmethoden 19 2.6.1 Überkritische Trocknung aus reinem CO2 19 2.6.2 Überkritische Trocknung aus CO2- Ethanolgemisch 20 2.6.3 Gefriertrocknung 20 2.6.4 Trocknung unter Atmosphärendruck 20 2.6.5 Trocknung unter Atmosphärendruck mit NOVEC 7000 21 2.7 Aktivierung der Aerogelkatalysatoren und MSR Katalyse 21 3 Ergebnisse und Diskussion 22 3.1 Rückblick auf die eigene Masterarbeit 22 3.1.1 Synthesen über Epoxidmethode 22 3.1.2 Ansätze in der wässrigen Synthese 24 3.2 Fortsetzung der wässrigen Synthese 26 3.3 Wässrige Synthese und Experimentplanung über Maschinelles Lernen 29 3.3.1 Erste Erfahrung mit Experimentdesign durch Bayesianische Optimierung 29 3.3.2 Beobachtungen und Schlussfolgerungen aus der ersten Anwendung von EDBO 30 3.3.3 Optimierung nach Gelvolumen der Solvogele 31 3.4 Inerte Trägermaterialien 42 3.4.1 Silica Träger 42 3.4.2 Beladung der Trägermaterialien 48 3.5 Trocknungsmethoden 54 3.6 Temperaturverhalten der Oberfläche und Morphologie 65 3.6.1 Stegbreitenvergrößerung über die Temperatur 65 3.6.2 ATR-FT-IR Untersuchungen 70 3.6.3 Kristallinität der getemperten Proben 72 3.7 Ergebnisse in der Katalyse der Methanol-Dampfreformierung 74 3.7.1 Pd/In2O3 74 3.7.2 Pt/In2O3 79 3.7.3 Beladungsreihe Pt/In2O3 83 Zusammenfassung und Ausblick 86 4 Quellen 89 5 Geräte und Parameter 98 5.1 Rasterelektronenmikroskopie 98 5.2 Transmissionselektronenmikroskopie 98 5.3 Dynamische Lichtstreuung 98 5.4 Physisorption 98 5.5 Pulver-Röntgendiffraktometrie 99 5.6 Thermogravimetrie/Differenzthermoanalyse 99 5.7 ICP-OES 99 5.8 Quecksilber Porosimetrie 100 5.9 Aktivierung der Aerogelkatalysatoren und Katalyse 100 6 Chemikalien 102 Danksagungen 105 7 Anhang 107 7.1 IR Referenzspektren 107 7.1.1 Ammoniumnitrat 107 7.1.2 Indium (III) chlorid Monohydrat 110 7.1.3 Indiumnitrat hydrat 112 7.1.4 Urotropin 114 7.1.5 Natriumborhydrid 116 7.2 Code für Experimentplanung über Maschinelles Lernen 118 7.2.1 Erstellen der Umgebung und Import von benötigten Python Paketen 118 7.2.2 Erstellen des Parameterraums 118 7.2.3 Eintragen der Ergebnisse nach jedem Batch 121 7.2.4 SHAPLEY Werte 125 7.2.5 Basen und Stabilisator Interaktionen 125 7.2.6 Basen und Salz Interaktionen 127 7.2.7 Einfluss von Stabilisatorgewicht und Stabilisatorart 127 7.2.8 Ohne Stabilisator, mit anderen Parameter Einflüssen 128 7.2.9 Zitronensäure und andere Parameterinteraktionen 129 7.2.10 Trinatriumcitrat und andere Parameterinteraktionen 131 7.3 EDBO Experiment Batches 133 Versicherung 143
5

Rhodium diesel-reforming catalysts for fuel cell applications

Karatzas, Xanthias January 2011 (has links)
Heavy-duty diesel truck engines are routinely idled at standstill to provide cab heating or air conditioning, and in addition to supply electricity to comfort units such as radio and TV. Idling is an inefficient and unfavorable process resulting in increased fuel consumption, increased emissions, shortened engine life, impaired driver rest and health, and elevated noise. Hydrogen-fueled, polymer-electrolyte fuel-cell auxiliary power unit (PEFC-APU) as a silent external power supply, working independently of the main engine, is proposed as viable solution for better fuel economy and abatement of idling emissions. In a diesel PEFC-APU, the hydrogen storage problem is circumvented as hydrogen can be generated onboard from diesel by using a catalytic reformer. In order to make catalytic diesel PEFC-APU systems viable for commercialization research is still needed. Two key areas are the development of reforming catalyst and reformer design, which both are the scope of this thesis. For diesel-reforming catalysts, low loadings of Rh and RhPt alloys have proven to exhibit excellent reforming and hydrogen selectivity properties. For the development of a stable reforming catalyst, more studies have to be conducted in order to find suitable promoters and support materials to optimize and sustain the long-term performance of the Rh catalyst. The next step will be full-scale tests carried out at realistic operating conditions in order to fully comprehend the overall reforming process and to validate promising Rh catalysts. This thesis can be divided into two parts; the first part addresses the development of catalysts in the form of washcoated cordierite monoliths for autothermal reforming (ATR) of diesel. A variety of catalyst compositions were developed containing Rh or RhPt as active metals, CeO2, La2O3, MgO, Y2O3 as promoters and Al2O3, CeO2-ZrO2, SiO2 and TiO2 as support materials. The catalysts were tested in a bench-scale reactor and characterized by using N2-BET, XRD, H2 chemisorption, H2-TPR, O2-TPO, XPS and TEM analyses. The second part addresses the development and testing of full-scale reformers at various realistic operating conditions using promising Rh catalysts. The thesis shows that a variety of Rh on alumina catalysts was successfully tested for ATR of diesel (Papers I-IV). Also, zone-coating, meaning adding two washcoats on specific parts of the monolith, was found to have beneficial effects on the ATR catalyst performance (Paper II). In addition, RhPt supported on CeO2-ZrO2 was found to be one of the most active and promising catalyst candidates for ATR of diesel. The superior performance may be attributed to higher reducibility of RhiOx species and greater dispersion of Rh and Pt on the support (Paper IV). Finally, two full-scale diesel reformers were successfully developed and proven capable of providing high fuel conversion and hydrogen production from commercial diesel over selected Rh catalysts (Papers II-III, V-VI). / QC 20110418

Page generated in 0.0776 seconds