11 |
Dynamique ultrarapide de lasers à cascade quantique Terahertz - le graphène comme émetteur Terahertz / Ultrafast dynamics of Terahertz quantum cascade lasers - graphene as Terahertz emitterMaysonnave, Jean 19 June 2014 (has links)
La gamme des ondes terahertz (THz) se situe à l'interface des domaines électronique et optique. Malgré un potentiel d'applications élevé, elle souffre d'un manque de dispositifs performants. Dans ce cadre, cette thèse se concentre sur l'étude fondamentale et la réalisation de nouvelles fonctionnalités associées à différentes sources THz, en utilisant la spectroscopie THz dans le domaine temporel (TDS). Cet outil puissant permet de mesurer le profil temporel d'un champ électrique THz et est utilisé pour explorer l'émission THz de lasers à cascade quantique (LCQ) et de graphène.Dans une première partie, la réponse ultrarapide de LCQs est étudiée. Un contrôle de la phase du champ électrique de LCQs THz via la technique "d'injection seeding" est réalisé puis optimisé. Il nous permet de mesurer le profil temporel de l'émission laser. A l'appui de cette expérience et de simulations, une description quantitative de la dynamique du gain est faite. Ces informations sont critiques pour la production d'impulsions courtes. Une modulation rapide du gain de LCQ est ensuite réalisée et conduit à la génération d'impulsions courtes (durée ~ 15 ps) en régime de blocage de modes. Ces études permettent notamment d'envisager les LCQs comme sources puissantes pour la TDS. Dans une seconde partie, nous montrons que le graphène peut émettre un rayonnement THz sous excitation optique par un effet non linéaire d'ordre 2. Cette émission résulte d'un transfert de quantité de mouvement des photons aux électrons du graphène ("photon drag"). Elle permet ainsi d'explorer des propriétés subtiles du graphène, telles que de très faibles différences de comportement entre les électrons et trous photogénérés. / The terahertz (THz) range is a region of the electromagnetic spectrum which lies at the limit between the electronic and optical domain. Currently, THz applications suffer from the lack of sources and detectors. In this context, this thesis focuses on the fundamental study and the development of new functionalities of different THz sources, usingTHz time-domain spectroscopy (TDS) as a base. This powerful tool enables to acquire the temporal profile of a THz electric field and is used to explore the THz emission properties of quantum cascade lasers (QCLs) and graphene.In the first part, the ultrafast response of QCLs is investigated. A phase control of the electric field of THz QCLs via injection seeding is realised and optimised. This enables the measurement of the amplitude and temporal profile of the laser emission. Throughthese experiments and simulations, a quantitative description of the gain dynamics can be accessed. This information is critical for modelocking. Finally, a fast modulation of the gain of QCLs is realized and leads to short pulses generation (15 ps) in a modelocked regime. These studies open the way for using QCLs as powerful sources in TDS.In the second part, THz radiation generation from graphene under optical excitation is demonstrated by a second order non-linear process. The THz emission results from themomentum transfer from the photons to the electrons of graphene (photon drag). As well as broadband THz generation, novel bandstructure properties of graphene can be explored such as the different dynamics between the photogenerated electrons and holes.
|
12 |
Material Characterization With Terahertz Time-domain SpectroscopyKoseoglu, Devrim 01 January 2010 (has links) (PDF)
Terahertz time-domain spectroscopy systems were developed and used for the anaylsis and characterization of various materials. By using ultra-fast Ti:Sapphire and Er-doped fiber lasers, terahertz time-domain spectrometers of different configurations were constructed and tested. To increase the accuracy and sensitivity of the measurements, the systems were optimized for spectroscopic analysis.
MBE grown nominally undoped epitaxial GaAs samples were used for the spectroscopic measurements. These samples were first charactrized by electrical measurements in order to check the accuracy of the terahertz time-domain experiments. We have shown that the terahertz time-domin spectroscopic techniques provides a quick way of the determining the real ( ) and complex () components of the refractive index of material. In addition, we have investigated the photoexcitation dynamics of these GaAs samples. We have demonstrated that direct and photoexcited terahertz time-domain measurements give an estimate of the carrier densities and both the hole and electron mobility values with good precision. rnin
An algorithm is developed to prevent the unwanted Fabry-Perot reflections which is commonly encountered in Terahertz Spectroscopy systems. We have performed terahertz time-domain transmission measurements on ZnTe < / 110> / crystals of various thicknesses to test the applicability of this algorithm. We have shown that the algorithm developed provides a quick way of eliminating the &ldquo / etalon&rdquo / reflections from the data. In addition, it is also shown that these &ldquo / etalon&rdquo / effects can be used for the frequency calibration of terahertz time-domain spectrometers.
|
13 |
Terahertzová spektroskopie v časové doméně a vizualizace biologických objektů / Terahertz Time-Domain Spectroscopy and Visualization of Biological ObjectsNedvědová, Marie January 2022 (has links)
This thesis deals with the methods of Terahertz (THz) spectroscopy to observe the kinetics of haemostatic materials used for supporting the native mechanism of haemostasis. The theoretical part follows the physical principles of THz time-domain spectroscopy (THz TDS), mentions the advantages and limitations of this method and its application possibilities for the characterization of biomedical materials. Further, there are specified properties of actual haemostats, described principles of their function and usage in practice, including their interaction with the living tissue. There were performed experiments monitoring the kinetics of physiologic reaction of the tissue adhesive based on the cyanoacrylates and absorbable haemostats. The mechanisms of monitored reactions were explained based on the physical-chemical principles that are used also for the kinetic models’ derivation. Modelling of the measured data results in the estimation of the parameters characterizing the observed samples. The most interesting parameter is the time constant of the reaction because of the possibility to compare reaction rates of different types of haemostats. The detailed analysis of this parameter is performed using the means of statistical methods. Tissue adhesive samples were measured by other spectroscopic and microscopic methods to compare the findings with the experimental results of the THz TDS. Data were processed using algorithms designed especially for this experiment and analysed using mathematical methods.
|
Page generated in 0.5085 seconds