• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 96
  • 32
  • 7
  • 7
  • 3
  • 2
  • 1
  • Tagged with
  • 167
  • 99
  • 56
  • 49
  • 44
  • 38
  • 36
  • 26
  • 25
  • 24
  • 23
  • 21
  • 15
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Electroconductive PET/SWNT films by solution casting

Steinert, Brian W. January 2008 (has links) (PDF)
Thesis (M.S.)--University of Alabama at Birmingham, 2008. / Description based on contents viewed July 9, 2009; title from PDF t.p. Includes bibliographical references (p. 69-76).
32

Assessment of the environmental profile of PLA, PET, and PS clamshell containers using LCA methodology

Madival, Santosh. January 2008 (has links)
Thesis (M.S.)--Michigan State University. Packaging, 2008. / Title from PDF t.p. (Proquest, viewed on Aug. 11, 2009) Includes bibliographical references.
33

Reactive compatibilization of PBT/ABS blends by methyl methacrylate, glycidyl methacrylate, ethyl acrylate terpolymers /

Hale, Wesley Raymond, January 1998 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 1998. / Vita. Includes bibliographical references (leaves 255-263). Available also in a digital version from Dissertation Abstracts.
34

Electro-Mechanical Coupling of Indium Tin Oxide Coated Polyethylene Terephthalate ITO/PET for Flexible Solar Cells

Saleh, Mohamed A. 15 May 2013 (has links)
Indium tin oxide (ITO) is the most widely used transparent electrode in flexible solar cells because of its high transparency and conductivity. But still, cracking of ITO on PET substrates due to tensile loading is not fully understood and it affects the functionality of the solar cell tremendously as ITO loses its conductivity. Here, we investigate the cracking evolution in ITO/PET exposed to two categories of tests. Monotonous tensile testing is done in order to trace the crack propagation in ITO coating as well as determining a loading range to focus on during our study. Five cycles test is also conducted to check the crack closure effect on the resistance variation of ITO. Analytical model for the damage in ITO layer is implemented using the homogenization concept as in laminated composites for transverse cracking. The homogenization technique is done twice on COMSOL to determine the mechanical and electrical degradation of ITO due to applied loading. Finally, this damage evolution is used for a simulation to predict the degradation of ITO as function in the applied load and correlate this degradation with the resistance variation. Experimental results showed that during unloading, crack closure results in recovery of conductivity and decrease in the overall resistance of the cracked ITO. Also, statistics about the crack spacing showed that the cracking pattern is not perfectly periodical however it has a positively skewed distribution. The higher the applied load, the less the discrepancy in the crack spacing data. It was found that the cracking mechanism of ITO starts with transverse cracking with local delamination at the crack tip unlike the mechanism proposed in the literature of having only cracking pattern without any local delamination. This is the actual mechanism that leads to the high increase in ITO resistance. The analytical code simulates the damage evolution in the ITO layer as function in the applied strain. This will be extended further to correlate the damage to the resistance variation in following studies.
35

Heterogeneous crystallisation of polyethylene terephthalate. A study of the influence of organic and inorganic additives on the rate of crystallisation of polyethylene terephthalate and the subsequent changes in morphology and mechanical properties.

Ibbotson, C. January 1976 (has links)
The effect of various inorganic and organic additives as possible nucleating agents on the crystallisation behaviour of P. E. T. and the suosequent influence on the morphological and mechanical properties has been examined. Various methods of mixing(: the polymer and additive were investigated and a method involving the screw-Extrusion of the polymer and the additive was ultimately adopted. Crystallisation studies were carried out using differential scanning calorimetry under dynamic and isothermal modes. The results produced under conditions of isothermal crystallisation were analysed by means of a computer. Despite differences between batches of polymer all the additives with the exception of indigo produced a nucleating effect in the polymer as indicated by an increase in the rate of crystallisation compared with that of the base polymer. Two organo-metallic substances (sodium benzoate and sodium stearate) proved to be the most effective in this respect by decreasing the degree of supercooling of the polymer by 20 [degrees]. Morphological studies were carried out on isothermally crystallised samples, after etching and replication using a transmission electron microscope. A nodular structure whose dimensions were sensitive to both the nucleating agent and the temperature of crystallisation was observed. Mechanical testing of samples direct from the D. S. C. was carried out using a compression method. The breaking loads were found to vary with both the type of nucleating agent used and the crystallisation temperature chosen. A separate study involving the exanination of the resulting fracture surfaces by scanning electron microscopy revealed that a, high breaking load was associated with a fine discontinuous structure whereas lower breaking loads were characterised by a more continuous linear appearance. This implies a higher energy of fracture due to the increased surface area of the fracture surface of the former.
36

Evaluation of Microstructure and Free Volume in Polyesters caused By Orientation and Antiplasticizers

Zekriardehani, Shahab January 2017 (has links)
No description available.
37

Modeling and optimization of continuous melt-phase polyethylene terephthalate process

Pattalachinti, Ravi Kumar January 1994 (has links)
No description available.
38

Optimization of the melt-phase polyethylene terephthalate manufacturing process

Calmeyn, Timothy J. January 1995 (has links)
No description available.
39

Transient Crystallization of Poly (ethylene terephthalate) Bottles

Boyd, Timothy J. 25 August 2004 (has links)
No description available.
40

Development of high shrinkage Polyethylene Terephthalate (PET) shape memory polymer tendons for concrete crack closure

Teall, O.R., Pilegis, M., Sweeney, John, Gough, Timothy D., Thompson, Glen P., Jefferson, A., Lark, R., Gardner, D. 01 February 2017 (has links)
Yes / The shrinkage force exerted by restrained shape memory polymers can potentially be used to close cracks in structural concrete. This paper describes the physical processing and experimental work undertaken to develop high shrinkage die-drawn Polyethylene Terephthalate (PET) shape memory polymer tendons for use within a crack closure system. The extrusion and die-drawing procedure used to manufacture a series of PET tendon samples is described. The results from a set of restrained shrinkage tests, undertaken at differing activation temperatures, are also presented along with the mechanical properties of the most promising samples. The stress developed within the tendons is found to be related to the activation temperature, the cross-sectional area and to the draw rate used during manufacture. Comparisons with commercially-available PET strip samples used in previous research are made, demonstrating an increase in restrained shrinkage stress by a factor of two for manufactured PET filament samples. / Thanks must go to the EPSRC for their funding of the Materials for Life (M4L) project (EP/K026631/1) and to Costain Group PLC. for their industrial sponsorship of the project and author.

Page generated in 0.0727 seconds