• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Terrain and Landcover Effects of the Southern Appalachian Mountains on the Low-Level Rotational Wind Fields of Supercell Thunderstorms

Prociv, Kathryn A. 05 June 2012 (has links)
That tornadoes cannot occur in mountains due to disruptive influences of the complex terrain is a common misperception. Multiple tornadoes occur each year in mountainous environments, including the Appalachian Mountains. Copious research examines the influences of complex terrain on large severe weather systems such as multicell convective systems and squall lines, but research is lacking investigating this same relationship for smaller-scale severe weather phenomena like supercells and tornadoes. This study examines how complex terrain may have influenced the rotational low-level wind fields of fourteen supercell thunderstorms in the Appalachians. The terrain variables include elevation, land cover, slope, and aspect. Using GIS mapping techniques, the individual storm tracks were overlaid onto elevation, land cover, slope, and aspect layers; points along the storm tracks were measured to correlate storm intensities with the underlying terrain. Hypotheses predict that lower elevations, areas of shallower slopes, agricultural land covers, and terrain features with a southeasterly orientation represent terrain variables that would enhance low-level rotation in the lower levels. Results indicate that elevation has a significant impact on storm rotational intensity, especially in mountainous regions. Lower and flatter elevations augment storm rotational intensity, and higher elevations decrease storm rotational intensity. Additionally, northern and western facing slopes exhibited a negative relationship to storm intensity. A qualitative examination revealed vorticity stretching to be evident in eight of the fourteen storms; with vorticity stretching evident on both southeasterly and northwesterly slopes. Future research on appropriate scale for storm-terrain interactions could reveal even stronger relationships between topography and supercell thunderstorms. / Master of Science
2

Re-creation and Worse Case Scenario of Accidental Release of Styrene Gas from a Rail Car

Keyes, Sarah Elizabeth January 2009 (has links)
No description available.
3

USE OF AIR DISPERSION MODELING TO ESTIMATE THE TIME POTENTIALLY AVAILABLE FOR EMERGENCY RESPONSE ACTION NEEDED TO PROTECT PUBLIC SAFETY FROM CHEMICAL RELEASES

ADKINS, CHRISTOPHER K. 28 September 2005 (has links)
No description available.

Page generated in 0.0764 seconds