Spelling suggestions: "subject:"tertiary creek"" "subject:"tertiary crear""
1 |
CORRELATION BETWEEN CREEP AND TENSILE BEHAVIOUR IN LOW ALLOY STEELJamiru, Tamba 28 February 2007 (has links)
Student Number : 9800022T -
PhD thesis -
School of Mechanical, Industrial and Aeronautical Engineering -
Faculty of Engineering and the Built Environment / For many applications, it may be useful to be able to estimate creep
properties of a material from simpler testing procedures such as tensile tests
than the conventional creep testing procedures. Most alloys used for creep
service conditions are in a hardened condition and thus tertiary creep,
controlled by micro structural degradation, is dominant. The object of the
study was to investigate a reasonably simple method for estimating the creep
behavior of a low alloy 1% Cr, 0.25 % Mo steel from tensile yield data. The
study involved performing of series of investigations, including age hardening,
tensile and creep tests.
Microstructural degradation was monitored from specimens held in a furnace
for different times and temperatures, which were then tested in tension at
room temperatures. Tensile tests were carried out at different temperatures
and strain rates and the data used to determine material parameters for use
in kinetic equations describing deformation. For comparison, creep curves
were obtained from both creep tests and tensile tests results. Tests on
furnace aged specimens were used to quantify softening due to material
degradation and formulate a structure evolution and kinetic expressions used
to determine creep curves.
The modified equation by Dorn was used to determine the material parameters
and to predict flow characteristics. Two sets of mechanisms were observed. At
low temperature and high stress (above 550MPa) dislocation by glide
mechanism was investigated. At higher temperatures and low stress (below
550MPa), some form of power law creep was observed. Glide mechanism was
investigated and material parameters σ ) , n and activation volume v, were
calculated. The calculated value of σ ) was assumed for both plastic deformation
and the softening kinetics.
A reasonably good estimate of the creep behavior of the low alloy steel used
in this investigation in which tertiary creep dominates can be calculated from
tensile yield stress values. Furthermore, the creep rate and recovery have
similar stress dependences, with the stress and temperature dependence similar to that predicted by recovery theory. The value of activation energy
observed for creep for this alloy is in line with the processes which could be
related to self diffusion.
In order to justify the significance of this study, four existing empirical models
are discussed, highlighting their merits and demerits with respect to the models
used in this study. These are θ-Projection, Damage Mechanics, Estrin-Mecking
and the Internal Stress Methods. Generally, in this class of alloys, recovery
process occurs under an effective stress (i.e. an applied stress less the internal
stress). Thus the possibility of using tensile data obtained in this study in the
internals stress model was explored. The model could replicate the one used in
this study if the change in internal stress value o σ is assumed to be negligible.
This could be assumed to be true for tensile data at high stresses and low
temperature especially during secondary creep rate when the internal stress
approximates to the applied stress and at short test durations.
|
2 |
UNIFIED SECONDARY AND TERTIARY CREEP MODELING OF ADDITIVELY MANUFACTURED NICKEL-BASED SUPERALLOYSHarshal Ghanshy Dhamade (11002041) 05 August 2021 (has links)
<div>Additively manufactured (AM) metals have been increasingly fabricated for structural applications. However, a major hurdle preventing their extensive application is lack of understanding of their mechanical properties. To address this issue, the objective of this research is to develop a computational model to simulate the creep behavior of nickel alloy 718 manufactured using the laser powder bed fusion (L-PBF) additive manufacturing process. A finite element (FE) model with a subroutine is created for simulating the creep mechanism for 3D printed nickel alloy 718 components.</div><div><br></div><div>A continuum damage mechanics (CDM) approach is employed by implementing a user defined subroutine formulated to accurately capture the creep mechanisms. Using a calibration code, the material constants are determined. The secondary creep and damage constants are derived using the parameter fitting on the experimental data found in literature. The developed FE model is capable to predict the creep deformation, damage evolution, and creep-rupture life. Creep damage and rupture is simulated as defined by the CDM theory.</div><div>The predicted results from the CDM model compare well with experimental data, which are collected from literature for L-PBF manufactured nickel alloy 718 of creep deformation and creep rupture, at different levels of temperature and stress. </div><div><br></div><div>Using the multi-regime Liu-Murakami (L-M) and Kachanov-Rabotnov (K-R) isotropic creep damage formulation, creep deformation and rupture tests of both the secondary and tertiary creep behaviors are modeled.</div><div>A single element FE model is used to validate the model constants. The model shows good agreement with the traditionally wrought manufactured 316 stainless steel and nickel alloy 718 experimental data collected from the literature. Moreover, a full-scale axisymmetric FE model is used to simulate the creep test and the capacity of the model to predict necking, creep damage, and creep-rupture life for L-PBF manufactured nickel alloy 718. The model predictions are then compared to the experimental creep data, with satisfactory agreement.</div><div><br></div><div>In summary, the model developed in this work can reliably predict the creep behavior for 3D printed metals under uniaxial tensile and high temperature conditions.</div>
|
3 |
The TLC Method for Modeling Creep Deformation and RuptureMay, David 01 May 2014 (has links)
This thesis describes a novel new method, termed the Tangent-Line-Chord (TLC) method, that can be used to more efficiently model creep deformation dominated by the tertiary regime. Creep deformation is a widespread mechanical mode of failure found in high-stress and temperature mechanical systems. To accurately simulate creep and its effect on structures, researchers utilize finite element analysis (FEA). General purpose FEA packages require extensive amounts of time and computer resources to simulate creep softening in components because of the large deformation rates that continuously evolve. The goal of this research is to employ multi-regime creep models, such as the Kachanov-Rabotnov model, to determine a set of equations that will allow creep to be simulated using as few iterations as possible. The key outcome is the freeing up of computational resources and the saving of time. Because both the number of equations and the value of material constants within the model change depending on the approach used, programming software will be utilized to automate this analytical process. The materials being considered in this research are mainly generic Ni-based superalloys, as they exhibit creep responses that are dominated by secondary and tertiary creep.
|
Page generated in 0.0749 seconds