• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Improving encoding efficiency in test compression using sequential linear decompressors with retained free variables

Muthyala Sudhakar, Sreenivaas 23 October 2013 (has links)
This thesis proposes an approach to improve test compression using sequential linear decompressors by using retained free variables. Sequential linear decompressors are inherently efficient and attractive for encoding test vectors with high percentages of don't cares (i.e., test cubes). The encoding of these test cubes is done by solving a system of linear equations. In streaming decompression, a fixed number of free variables are used to encode each test cube. The non-pivot free variables used in Gaussian Elimination are wasted when the decompressor is reset before encoding the next test cube which is conventionally done to keep computational complexity manageable. In this thesis, a technique for retaining the non-pivot free variables when encoding one test cube and using them in encoding the subsequent test cubes is explored. This approach retains most of the non-pivot free variables with a minimal increase in runtime for solving the equations. Also, no additional control information is needed. Experimental results are presented showing that the encoding efficiency and hence compression, can be significantly boosted. / text
2

Improving encoding efficiency in test compression based on linear techniques

Muthyala Sudhakar, Sreenivaas 10 February 2015 (has links)
Sequential linear decompressors are widely used to implement test compression. Bits stored on the tester (called free variables) are assigned values to encode the test vectors such that when the tester data is decompressed, it reproduces the care bits in the test cube losslessly. In order to do this, the free variable dependence of the scan cells is obtained by symbolic simulation and a system of linear equations, one equation per care bit in a test cube, is solved to obtain the tester data. Existing techniques reset the decompressor after every test cube to avoid accumulating too many free variables, to keep the computation for encoding manageable. This leads to wastage of unused free variables and reduces the efficiency in encoding. Moreover, existing techniques preload the decompressor with free variables before scan shifting, which increases test time to help encode the early scan cells. This dissertation presents new approaches that improve the efficiency of the decompression process, achieving greater test compression and reducing test costs. The contributions of this dissertation include a low cost method to retain unused free variables while encoding a test cube and reuse them while encoding other test cubes with a minor increase in computational complexity. In addition, a test scheduling mechanism is described for system on chip (SoC) architectures that implements retaining unused free variables for SoCs without any hardware overhead and with little additional control. For testing 3D-ICs, a novel daisy-chain architecture for the sequential linear decompressor is proposed for sharing unused free variables across layers with a reduced number of TSVs (through silicon via) needed to transport test data (also called test elevators) to non-bottom layers. A scan feedforward technique is proposed which improves the free variable dependence of the scan cells, thereby increasing the probability of encoding of test cubes, especially when the early scan cells have a lot of specified bits, thereby avoiding the need for preloading the decompressor. Lastly, a feedforward/feedback mechanism in the scan chains for combinational linear decompressors is proposed which improves encoding flexibility and reduces tester data without pipelining the decompressor like the conventional methods, thereby reducing the test time. / text
3

Design for test methods to reduce test set size

Liu, Yingdi 01 August 2018 (has links)
With rapid development in semiconductor technology, today's large and complex integrated circuits require a large amount of test data to achieve desired test coverage. Test cost, which is proportional to the size of the test set, can be reduced by generating a small number of highly effective test patterns. Automatic Test Pattern Generators (ATPGs) generate effective deterministic test patterns for different fault models and can achieve high test coverage. To reduce ATPG-produced test set size, design for test (DFT) methods can be used to further improve the ATPG process and apply generated test patterns in more efficient ways. The first part of this dissertation introduces a test point insertion (TPI) technique that reduces the test pattern counts and test data volume of a design by adding additional hardware called control points. These dedicated control points are inserted at internal nodes of the design to resolve large internal conflicts during ATPG. Therefore, more faults can be detected by a single test pattern. To minimize silicon area needed to implement these control points, we propose a method that reuses some existing functional flip-flops as drivers of the control points, instead of inserting dedicated flip-flops for the control points. Experimental results on industrial designs indicate that the proposed technique can achieve significant test pattern reductions, similar to the control points using dedicated flip-flops. The second part of this dissertation proposes a staggered ATPG scheme that produces deterministic test-per-clock-based staggered test patterns by using dedicated compactor scan chains to capture additional test responses during scan shift cycles that are used for regular scan cells to completely load each test pattern. These compactor scan chains are formed by dedicated capture-per-cycle observation test points inserted at suitable locations of the design. By leveraging this new scan infrastructure, more compacted test patterns can be generated, and more faults can also be systematically detected during the simulation process, thus reducing the overall test pattern count. To meet the stringent test requirements for in-system test (especially for automotive test), a built-in self-test (BIST) approach, called Stellar BIST, is introduced in the last part of this dissertation. Stellar BIST employs a dedicated BIST infrastructure with additional on-system memory to store some parent test patterns (seeds). Derivative test patterns can be obtained by complementing selected bits of corresponding parent patterns through an on-chip Stellar BIST controller. A dedicated ATPG process is also proposed for generating a minimal set of test patterns that need to be stored and their effective derivative patterns that require short test application time. Furthermore, the proposed scheme can provide flexible trade-offs between stored test data volume and test application time.
4

Computational Simulation of Mechanical Tests of Isolated Animal Cells / Computational Simulation of Mechanical Tests of Isolated Animal Cells

Bansod, Yogesh Deepak January 2016 (has links)
Buňka tvoří složitý biologický systém vystavený mnoha mimobuněčným mechanickým podnětům. Hlubší pochopení jejího mechanického chování je důležité pro charakterizaci její odezvy v podmínkách zdraví i nemoci. Výpočtové modelování může rozšířit pochopení mechaniky buňky, která může přispívat k vytvoření vztahů mezi strukturou a funkcí různých typů buněk v různých stavech. Za tímto účelem byly pomocí metody konečných prvků (MKP) vytvořeny dva bendotensegritní modely buňky v různých stavech: model vznášející se buňky pro analýzu její globální mechanické odezvy, jako je protažení nebo stlačení, a model buňky přilnuté k podložce, který vysvětluje odezvu buňky na lokální mechanické zatížení, jako třeba vtlačování hrotu při mikroskopii atomárních sil (AFM). Oba zachovávají základní principy tensegritních struktur jako je jejich předpětí a vzájemné ovlivnění mezi komponentami, ale prvky se mohou nezávisle pohybovat. Zahrnutí nedávno navržené bendotensegritní koncepce umožňuje těmto modelům brát v úvahu jak tahové, tak i ohybové namáhání mikrotubulů (MTs) a také zahrnout vlnitost intermediálních filament (IFs). Modely předpokládají, že jednotlivé složky cytoskeletu mohou měnit svůj tvar a uspořádání, aniž by při jejich odstranění došlo ke kolapsu celé buněčné struktury, a tak umožňují hodnotit mechanický příspěvek jednotlivých složek cytoskeletu k mechanice buňky. Model vznášející se buňky napodobuje realisticky odezvu síla-deformace během protahování a stlačování buňky a obě odezvy ilustrují nelineární nárůst tuhosti s růstem mechanického zatížení. Výsledky simulací ukazují, že aktinová filamenta i mikrotubuly hrají klíčovou úlohu při určování tahové odezvy buňky, zatímco k její tlakové odezvě přispívají podstatně jen aktinová filamenta. Model buňky přilnuté k podložce dává odezvu síla-hloubka vtlačení ve dvou různých místech odpovídající nelineární odezvě zjištěné experimentálně při AFM. Výsledky simulací ukazují, že pro chování buňky je rozhodující místo vtlačení a její tuhost určují aktinová povrchová vrstva, mikrotubuly a cytoplazma. Navržené modely umožňují cenný vhled do vzájemných souvislostí mechanických vlastností buněk, do mechanické úlohy komponent cytoskeletu jak individuálně, tak i ve vzájemné synergii a do deformace jádra buňky za různých podmínek mechanického zatížení. Tudíž tato práce přispívá k lepšímu pochopení mechaniky cytoskeletu zodpovědné za chování buňky, což naopak může napomáhat ve zkoumání různých patologických podmínek jako je rakovina a cévní choroby.

Page generated in 0.1186 seconds