Spelling suggestions: "subject:"testtime data augmentation"" "subject:"testkeime data augmentation""
1 |
Uncertainty Estimation in Volumetric Image SegmentationPark, Donggyun January 2023 (has links)
The performance of deep neural networks and estimations of their robustness has been rapidly developed. In contrast, despite the broad usage of deep convolutional neural networks (CNNs)[1] for medical image segmentation, research on their uncertainty estimations is being far less conducted. Deep learning tools in their nature do not capture the model uncertainty and in this sense, the output of deep neural networks needs to be critically analysed with quantitative measurements, especially for applications in the medical domain. In this work, epistemic uncertainty, which is one of the main types of uncertainties (epistemic and aleatoric) is analyzed and measured for volumetric medical image segmentation tasks (and possibly more diverse methods for 2D images) at pixel level and structure level. The deep neural network employed as a baseline is 3D U-Net architecture[2], which shares the essential structural concept with U-Net architecture[3], and various techniques are applied to quantify the uncertainty and obtain statistically meaningful results, including test-time data augmentation and deep ensembles. The distribution of the pixel-wise predictions is estimated by Monte Carlo simulations and the entropy is computed to quantify and visualize how uncertain (or certain) the predictions of each pixel are. During the estimation, given the increased network training time in volumetric image segmentation, training an ensemble of networks is extremely time-consuming and thus the focus is on data augmentation and test-time dropouts. The desired outcome is to reduce the computational costs of measuring the uncertainty of the model predictions while maintaining the same level of estimation performance and to increase the reliability of the uncertainty estimation map compared to the conventional methods. The proposed techniques are evaluated on publicly available volumetric image datasets, Combined Healthy Abdominal Organ Segmentation (CHAOS, a set of 3D in-vivo images) from Grand Challenge (https://chaos.grand-challenge.org/). Experiments with the liver segmentation task in 3D Computed Tomography (CT) show the relationship between the prediction accuracy and the uncertainty map obtained by the proposed techniques. / Prestandan hos djupa neurala nätverk och estimeringar av deras robusthet har utvecklats snabbt. Däremot, trots den breda användningen av djupa konvolutionella neurala nätverk (CNN) för medicinsk bildsegmentering, utförs mindre forskning om deras osäkerhetsuppskattningar. Verktyg för djupinlärning fångar inte modellosäkerheten och därför måste utdata från djupa neurala nätverk analyseras kritiskt med kvantitativa mätningar, särskilt för tillämpningar inom den medicinska domänen. I detta arbete analyseras och mäts epistemisk osäkerhet, som är en av huvudtyperna av osäkerheter (epistemisk och aleatorisk) för volymetriska medicinska bildsegmenteringsuppgifter (och möjligen fler olika metoder för 2D-bilder) på pixelnivå och strukturnivå. Det djupa neurala nätverket som används som referens är en 3D U-Net-arkitektur [2] och olika tekniker används för att kvantifiera osäkerheten och erhålla statistiskt meningsfulla resultat, inklusive testtidsdata-augmentering och djupa ensembler. Fördelningen av de pixelvisa förutsägelserna uppskattas av Monte Carlo-simuleringar och entropin beräknas för att kvantifiera och visualisera hur osäkra (eller säkra) förutsägelserna för varje pixel är. Under uppskattningen, med tanke på den ökade nätverksträningstiden i volymetrisk bildsegmentering, är träning av en ensemble av nätverk extremt tidskrävande och därför ligger fokus på dataaugmentering och test-time dropouts. Det önskade resultatet är att minska beräkningskostnaderna för att mäta osäkerheten i modellförutsägelserna samtidigt som man bibehåller samma nivå av estimeringsprestanda och ökar tillförlitligheten för kartan för osäkerhetsuppskattning jämfört med de konventionella metoderna. De föreslagna teknikerna kommer att utvärderas på allmänt tillgängliga volymetriska bilduppsättningar, Combined Healthy Abdominal Organ Segmentation (CHAOS, en uppsättning 3D in-vivo-bilder) från Grand Challenge (https://chaos.grand-challenge.org/). Experiment med segmenteringsuppgiften för lever i 3D Computed Tomography (CT) vissambandet mellan prediktionsnoggrannheten och osäkerhetskartan som erhålls med de föreslagna teknikerna.
|
Page generated in 0.1136 seconds