• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 62
  • 11
  • 7
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 129
  • 30
  • 29
  • 27
  • 24
  • 24
  • 24
  • 16
  • 16
  • 15
  • 15
  • 11
  • 11
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Estratégias de beaconing para comunicação em redes veiculares / Beaconing strategies for communication in vehicular networks

Roberto Sadao Yokoyama 11 July 2014 (has links)
Em sistemas de transporte inteligentes, as redes veiculares têm um papel fundamental. Por meio da comunicação sem fio, veículos irão disseminar conteúdo nessas redes para melhorar a segurança e eficiência no transporte, prover aplicações de entretenimento etc. Beaconing, proposto originalmente para aplicações de segurança, é usado neste estudo como uma das maneiras de disseminação de conteúdo, onde o nó emissor insere uma informação em um quadro de beacon, que é propagado em broadcast. A maioria dos estudos da literatura focam na otimização de desempenho de beaconing e utilizam o método de simulação para validação e avaliação. Esta tese explora estratégias de beaconing com validação e avaliação usando método experimental em ambientes reais para resolver problemas relacionados a aplicações cooperativas de localização e posicionamento de veículos. Para tanto, foi implantado um testbed veicular para realização de testes tradicionais, como o de desempenho sobre os parâmetros de comunicação, mas principalmente de novos protocolos que transmitem informações adicionais nos beacons. Os principais resultados são: i) uma aplicação para inferência da distância entre os veículos por meio do sinal recebido de rádio frequência, ii) localização de pontos de interesse para motoristas e passageiros e por fim, iii) verificação da localização do veículo e disseminação de beacons anonimamente. Desta maneira, este estudo demonstrou, por meio de experimentos em ambientes reais, que estratégias de beacons podem ser aplicadas com sucesso para aplicações que usam cooperação para localização e posicionamento em redes veiculares / Vehicular networks play an important role in intelligent transportation systems. Through wireless communication, vehicles can disseminate information to improve transportation safety and efficiency, and provide entertainment applications. Beaconing, first proposed for safety applications, is used in this study as one of the ways to disseminate information, in which the source node adds information to the beacon frame, which is finally propagated in broadcast. Most studies in the literature focus on beaconing performance and optimization using simulations. This thesis explores beaconing strategies, applying experimental methods to validate and evaluate beaconing in real environments, solving problems related to cooperative location applications and vehicles positioning. A vehicular network testbed was developed to perform traditional tests, such as the performance of the communication parameters and to specifically test novel protocols that transmit additional information in the beacons. The key contributions are: i) an application to infer the distance between vehicles via the radio frequency signal received; ii) location of points of interest for drivers and passengers; and iii) location verification of vehicle and anonymous beacon broadcast. In brief, this study demonstrated, through experiments in real environments, that beacon strategies can be successfully applied to problems of location and positioning in vehicular networks
12

Integrace systému rozšířené reality do testbedu Průmysl 4.0 / Augmented reality system for Industry 4.0 testbed

Poláček, Matěj January 2020 (has links)
The diploma thesis is concerned with the research of integration of augmented reality into the testbed Industry 4.0. Testbed is presenting automated robotic barman intended for practical demonstration and verification of concepts such as Industry 4.0 or a digital factory. The integration of augmented reality is realized via an Android application and creates the AR information system of the testbed. The theoretical part of the thesis is about Industry 4.0, the construction of the testbed and technologies of augmented reality used during implementation of the application. The practical part deals with the implementation and testing of the application. The conclusion includes an evaluation of the goals of the thesis.
13

Experimental Study of Wireless Ad Hoc Networks

GUPTA, RAHUL 22 January 2003 (has links)
No description available.
14

Development of a Virtual Applications Networking Infrastructure Node

Redmond, Keith 15 February 2010 (has links)
This thesis describes the design of a Virtual Application Networking Infrastructure (VANI) node that can be used to facilitate network architecture experimentation. Cur- rently the VANI nodes provide four classes of physical resources – processing, reconfig- urable hardware, storage and interconnection fabric – but the set of sharable resources can be expanded. Virtualization software allows slices of these resources to be appor- tioned to VANI nodes that can in turn be interconnected to form virtual networks, which can operate according to experimental network and application protocols. This thesis discusses the design decisions that have been made in the development of this system and provides a detailed description of the prototype, including how users interact with the resources and the interfaces provided by the virtualization layers.
15

Development of a Virtual Applications Networking Infrastructure Node

Redmond, Keith 15 February 2010 (has links)
This thesis describes the design of a Virtual Application Networking Infrastructure (VANI) node that can be used to facilitate network architecture experimentation. Cur- rently the VANI nodes provide four classes of physical resources – processing, reconfig- urable hardware, storage and interconnection fabric – but the set of sharable resources can be expanded. Virtualization software allows slices of these resources to be appor- tioned to VANI nodes that can in turn be interconnected to form virtual networks, which can operate according to experimental network and application protocols. This thesis discusses the design decisions that have been made in the development of this system and provides a detailed description of the prototype, including how users interact with the resources and the interfaces provided by the virtualization layers.
16

Interference Management in Dense 802.11 Networks

Ahmed, Nabeel 16 September 2009 (has links)
Wireless networks are growing at a phenomenal rate. This growth is causing an overcrowding of the unlicensed RF spectrum, leading to increased interference between co-located devices. Existing decentralized medium access control (MAC) protocols (e.g. IEEE 802.11a/b/g standards) are poorly designed to handle interference in such dense wireless environments. This is resulting in networks with poor and unpredictable performance, especially for delay-sensitive applications such as voice and video. This dissertation presents a practical conflict-graph (CG) based approach to designing self-organizing enterprise wireless networks (or WLANs) where interference is centrally managed by the network infrastructure. The key idea is to use potential interference information (available in the CG) as an input to algorithms that optimize the parameters of the WLAN.We demonstrate this idea in three ways. First, we design a self-organizing enterprise WLAN and show how the system enhances performance over non-CG based schemes, in a high fidelity network simulator. Second, we build a practical system for conflict graph measurement that can precisely measure interference (for a given network configuration) in dense wireless environments. Finally, we demonstrate the practical benefits of the conflict graph system by using it in an optimization framework that manages associations and traffic for mobile VoIP clients in the enterprise. There are a number of contributions of this dissertation. First, we show the practical application of conflict graphs for infrastructure-based interference management in dense wireless networks. A prototype design exhibits throughput gains of up to 50% over traditional approaches. Second, we develop novel schemes for designing a conflict graph measurement system for enterprise WLANs that can detect interference at microsecond-level timescales and with little network overhead. This allows us to compute the conflict graph up to 400 times faster as compared to the current best practice proposed in the literature. The system does not require any modifications to clients or any specialized hardware for its operation. Although the system is designed for enterprise WLANs, the proposed techniques and corresponding results are applicable to other wireless systems as well (e.g. wireless mesh networks). Third, our work opens up the space for designing novel fine-grained interference-aware protocols/algorithms that exploit the ability to compute the conflict graph at small timescales. We demonstrate an instance of such a system with the design and implementation of an architecture that dynamically manages client associations and traffic in an enterprise WLAN. We show how mobile clients sustain uninterrupted and consistent VoIP call quality in the presence of background interference for the duration of their VoIP sessions.
17

UWB technology and its application

Santhanam, Manisundaram January 2012 (has links)
Despite the fact ultra-wideband (UWB) technology has been around for over 30 years, there is a newfound excitement about its potential for communications. With the advantageous qualities of multipath immunity and low power spectral density, researchers are examining fundamental questions about UWB communication systems. Majorly the whole report gives a complete picture about properties of UWB signal and its advantages and disadvantages, generation of the UWB pulse using various techniques, Modulation scheme, Test bed, applications, UWB regulations. The report mainly concerns with the survey about various techniques and also its comparison of generating UWB pulses using various components. There is a general description on various modulation and demodulation scheme that are relevant to UWB technology and its various applications concerning different fields.   This report clearly explains how UWB is far better than RFID and difference between active and passive RFID and its communication protocol, message format. Clear explanation about advantage of higher operating frequencies and low power spectral density. Properties of UWB pulse gives clear idea why we go for UWB and in near future lot of applications will discover. Generation of UWB is a tedious process and in this report readers can understand the various method of generation its advantages and its drawbacks. Modulation and demodulation scheme gives clear idea about how UWB are modulated and demodulated as well as its probability of error and in which situation which modulation is suitable. By using future testbed concept, smaller size UWB chip will be designed and used in various application efficiently. Application gives clear idea about how to take advantage of various properties.
18

Interference Management in Dense 802.11 Networks

Ahmed, Nabeel 16 September 2009 (has links)
Wireless networks are growing at a phenomenal rate. This growth is causing an overcrowding of the unlicensed RF spectrum, leading to increased interference between co-located devices. Existing decentralized medium access control (MAC) protocols (e.g. IEEE 802.11a/b/g standards) are poorly designed to handle interference in such dense wireless environments. This is resulting in networks with poor and unpredictable performance, especially for delay-sensitive applications such as voice and video. This dissertation presents a practical conflict-graph (CG) based approach to designing self-organizing enterprise wireless networks (or WLANs) where interference is centrally managed by the network infrastructure. The key idea is to use potential interference information (available in the CG) as an input to algorithms that optimize the parameters of the WLAN.We demonstrate this idea in three ways. First, we design a self-organizing enterprise WLAN and show how the system enhances performance over non-CG based schemes, in a high fidelity network simulator. Second, we build a practical system for conflict graph measurement that can precisely measure interference (for a given network configuration) in dense wireless environments. Finally, we demonstrate the practical benefits of the conflict graph system by using it in an optimization framework that manages associations and traffic for mobile VoIP clients in the enterprise. There are a number of contributions of this dissertation. First, we show the practical application of conflict graphs for infrastructure-based interference management in dense wireless networks. A prototype design exhibits throughput gains of up to 50% over traditional approaches. Second, we develop novel schemes for designing a conflict graph measurement system for enterprise WLANs that can detect interference at microsecond-level timescales and with little network overhead. This allows us to compute the conflict graph up to 400 times faster as compared to the current best practice proposed in the literature. The system does not require any modifications to clients or any specialized hardware for its operation. Although the system is designed for enterprise WLANs, the proposed techniques and corresponding results are applicable to other wireless systems as well (e.g. wireless mesh networks). Third, our work opens up the space for designing novel fine-grained interference-aware protocols/algorithms that exploit the ability to compute the conflict graph at small timescales. We demonstrate an instance of such a system with the design and implementation of an architecture that dynamically manages client associations and traffic in an enterprise WLAN. We show how mobile clients sustain uninterrupted and consistent VoIP call quality in the presence of background interference for the duration of their VoIP sessions.
19

Opportunistic Networking : Congestion, Transfer Ordering and Resilience

Bjurefors, Fredrik January 2014 (has links)
Opportunistic networks are constructed by devices carried by people and vehicles. The devices use short range radio to communicate. Since the network is mobile and often sparse in terms of node contacts, nodes store messages in their buffers, carrying them, and forwarding them upon node encounters. This form of communication leads to a set of challenging issues that we investigate: congestion, transfer ordering, and resilience. Congestion occurs in opportunistic networks when a node's buffers becomes full. To be able to receive new messages, old messages have to be evicted. We show that buffer eviction strategies based on replication statistics perform better than strategies that evict messages based on the content of the message. We show that transfer ordering has a significant impact on the dissemination of messages during time limited contacts. We find that transfer strategies satisfying global requests yield a higher delivery ratio but a longer delay for the most requested data compared to satisfying the neighboring node's requests. Finally, we assess the resilience of opportunistic networks by simulating different types of attacks. Instead of enumerating all possible attack combinations, which would lead to exhaustive evaluations, we introduce a method that use heuristics to approximate the extreme outcomes an attack can have. The method yields a lower and upper bound for the evaluated metric over the different realizations of the attack. We show that some types of attacks are harder to predict the outcome of and other attacks may vary in the impact of the attack due to the properties of the attack, the forwarding protocol, and the mobility pattern. / WISENET
20

Sensor Networks and Their Radio Environment : On Testbeds, Interference, and Broken Packets

Hermans, Frederik January 2014 (has links)
Sensor networks consist of small sensing devices that collaboratively fulfill a sensing task, such as monitoring the soil in an agricultural field or measuring vital signs in a marathon runner. To avoid cumbersome and expensive cabling, nodes in a sensor network are powered by batteries and communicate wirelessly. As a consequence of the latter, a sensor network's communication is affected by its radio environment, i.e., the environment's propagation characteristics and the presence of other radio devices. This thesis addresses three issues related to the impact of the radio environment on sensor networks. Firstly, in order to draw conclusions from experimental results, it is necessary to assess how the environment and the experiment infrastructure affect the results. We design a sensor network testbed, dubbed Sensei-UU, to be easily relocatable. By performing an experiment in different environments, a researcher can asses the environments’ impact on results. We further augment Sensei-UU with support for mobile nodes. The implemented mobility approach adds only little variance to results, and therefore enables repeatable experiments with mobility. The repeatability of experiments increases the confidence in conclusions drawn from them. Secondly, sensor networks may experience poor communication performance due to cross-technology radio interference, especially in office and residential environments. We consider the problem of detecting and classifying the type of interference a sensor network is exposed to. We find that different sources of interference each leave a characteristic "fingerprint" on individual, corrupt 802.15.4 packets. We design and implement the SoNIC system that enables sensor nodes to classify interference using these fingerprints. SoNIC supports accurate classification in both a controlled and an uncontrolled environment. Finally, we consider transmission errors in an outdoor sensor network. In such an environment, errors occur despite the absence of interference if the signal-to-noise ratio at a receiver is too low. We study the characteristics of corrupt packets collected from an outdoor sensor network deployment. We find that content transformation in corrupt packets follows a specific pattern, and that most corrupt packets contain only few errors. We propose that the pattern may be useful for applications that can operate on inexact data, because it reduces the uncertainty associated with a corrupt packet. / WISENET

Page generated in 0.0432 seconds