• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 1
  • 1
  • Tagged with
  • 16
  • 16
  • 8
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Variant selection and its effect on texture inTi-6Al-4V

Obasi, Gideon Chima January 2012 (has links)
Titanium alloys are strong candidates for the aerospace industry and biomaterial applications because of their low density, high strength-to-weight ratio and very high strength even at temperatures up to 600°C. Like many other engineering alloys, titanium alloys are prone to strong preferred crystallographic orientation development during thermomechanical processing. Part of the titanium processing route is to heat treat the material above the β transus for the purpose of homogenization and associated phase transformation. This heat treatment dramatically affected the microstructure and texture evolution. Theoretically, such heat treatment should result in a nearly random texture if all variants during α→β→α phase transformation are active. In reality, significant textures are observed after such a heat treatment process. The present project aims at developing a detailed understanding of the root cause for this relatively strong texture by means of EBSD and in-situ neutron diffraction studies. The effect of β grain growth on variant selection during β to α phase transformation has been investigated by using two variants of Ti-6Al-4V with and without 0.4 wt% yttrium addition. The aim of adding yttrium was to control β grain growth above the β transus by pinning grain boundaries with yttria. Both materials were first thermomechanically processed to generate a similar starting microstructures and crystallographic textures. Subsequently, both materials were solution heat treated above the β transus followed by slow cooling to promote growth of the α lath structure from grain boundary α. Detailed EBSD and in situ neutron diffraction analysis were carried out to study microstructure and texture evolution. The variant selection calculation suggests that more variant selection occurred in convectional material with a large grain size compared to material with yttrium addition. In situ measurements showed that β texture strengthened significantly above the β transus with increasing β grain size. There was no significant variant selection during α→β transformation; variant selection noticeably increased during β→α transformation with increasing β grain size. Additional interrupted cooling experiments followed by EBSD analysis showed early nucleation of α variants with a 'butterfly morphology' from β grain boundaries that have a pair of β grain with a common <110> pole. These observations suggest reduced nucleation energies for α formation in such circumstances allowing extensive growth of these α variants into unoccupied β grains making it a dominant variant. The influence of rolling temperatures (i.e. at 800 ºC and 950 ºC) to produce different starting texture, on texture evolution and variant selection during α→β→α transformation was also investigated. Laboratory X-ray, EBSD and in-situ neutron diffraction texture analyses were carried out. Even though the transformation texture is stronger at 800 ºC, the degree of variant selection is stronger in materials rolled at950 ºC compared to material rolled at 800 ºC. Here, the enhanced variant selectionfor the material rolled at 950 ºC was related to the different β texture. It is suggested that the combination of a particular β texture components promote variant nucleation that can increase the likelihood of having β grain pairs with a common <110> pole.
2

Texture Evolution In Materials With Layered Crystal Structures

Vempati, Vamsi Krishna 28 May 2021 (has links)
No description available.
3

Effect of Sc Addition on the Mechanical Properties of Mg-Sc Binary Alloys

Silva, Catherine J. 06 1900 (has links)
The addition of rare earth (RE) alloying elements is a promising method for improving the strength, ductility and overall formability of magnesium (Mg) alloys. However, the underlying mechanism for this phenomenon remains unclear. An investigation on the effect of the rare earth element, scandium (Sc), on binary Mg-Sc alloys has been pursued. Tension and compression tests were performed on a series of dilute binary Mg-Sc alloys at temperatures of 298 K, 78 K and 4.2 K. As a reference, pure Mg was also investigated for comparative purposes. Differences in tension and compression stress-strain curves highlighted distinct activated mechanisms, where slip dominated in tension and twinning governed compression. The observed increase in ductility and prolonged necking was attributed to a weaker basal texture, enhanced twinning and non-basal slip. A decreased work hardening rate suggests an improvement in dislocation recovery with Sc addition. In compression, Mg-Sc alloys followed Fleischer’s theory of solution hardening, where stress scales with concentration, c, as c^1/2; however, there was a very weak fit with both Fleischer and Labusch models under tension. The strengthening rate displayed by Mg-Sc was relatively weak compared to previously studied Mg-RE systems. However, considering the estimated misfit parameters, the size and modulus misfit was not enough to account for the strengthening rate. The results suggest that hardening of the twinning mode may influence strength. Constitutive modelling, based on a self-consistent plasticity model, was used to characterize the deformation behaviour. The simulations predicted an increased relative activity of non-basal <c+a> slip with Sc addition, supporting experimental results and proposed mechanisms in literature. The results of Mg-Sc alloys have been connected to theories that identify a decrease in stacking fault energy (SFE) as the determining factor for increased strength and ductility of Mg-RE alloys. A comparison of the SFE of previously studied REEs with Sc, demonstrated strong evidence towards the theory’s validity. Sc has been shown to only moderately reduce the SFE of Mg and hence, the present experimental results have shown a moderate increase in strength and ductility. Additional modelling and detailed dislocation analysis are suggested as future steps to further support this theory. / Thesis / Master of Applied Science (MASc)
4

Deformation and Its Effect on Recrystallization in Magnesium Alloy AZ31

Liang, Shenglong 10 1900 (has links)
<p>Sheet specimens of alloy AZ31 were cross-rolled to equivalent strains of 0.05, 0.10, 0.30, 0.40, 0.56, and 0.77. The microstructure evolution was examined using a combination of optical metallography (OM), Electron Backscattered Diffraction (EBSD), Transmission Electron Microscopy (TEM) and X-ray diffraction (XRD). The results revealed significant activity of basal and non-basal slip as well as twinning. The twins were mainly of the contraction and double-twin (contraction-extension) types. In addition to the micron scale (1-5μm) twins observed on EBSD patterns, nano-scale twins were observed. The nano twins had a width of less than 0.20μm and existed either as individual/isolated twins or as twin-bundles that are several microns thick. The number of nano twin-bundles increased with increasing strain. Shear bands were also observed to form at high strains and eventually led to the failure of the sheet. As for the texture evolution, analysis of the pole figures shows an evident strengthening of the basal texture during the cross-rolling.</p> <p>Specimens of Mg alloy AZ31 cold-rolled to equivalent strains of 0.10 and 0.30 were selected and annealed at 250<sup>o</sup>C. The progress of recrystallization was followed using OM, EBSD and TEM with special emphasis on the nucleation of recrystallization. The distribution of recrystallization nuclei was very heterogeneous due to the heterogeneity of the as-deformed microstructure. Twin/grain-boundary and twin/twin intersections as well as twin interiors were the dominant recrystallization nucleation sites. Significant recovery was observed in the non-recrystallized regions and this limited the growth of the recrystallized grains.</p> / Master of Applied Science (MASc)
5

Micromechanical Modelling of Polyethylene

Alvarado Contreras, Jose Andres 11 1900 (has links)
The increasing use of polyethylene in diverse applications motivates the need for understanding how its molecular properties relate to the overall behaviour of the material. Although microstructure and mechanical properties of polymers have been the subject of several studies, the irreversible microstructural rearrangements occurring at large deformations are not completely understood. The purpose of this thesis is to describe how the concepts of Continuum Damage Mechanics can be applied to modelling of polyethylene materials under different loading conditions. The first part of the thesis consists of the theoretical formulation and numerical implementation of a three-dimensional micromechanical model for crystalline polyethylene. Based on the theory of shear slip on crystallographic planes, the proposed model is expressed in the framework of viscoplasticity coupled with degradation at large deformations. Earlier models aid in the interpretation of the mechanical behaviour of crystalline polyethylene under different loading conditions; however, they cannot predict the microstructural damage caused by deformation. The model, originally due to Parks and Ahzi (1990), was further developed in the light of the concept of Continuum Damage Mechanics to consider the original microstructure, the particular irreversible rearrangements, and the deformation mechanisms. Damage mechanics has been a matter of intensive research by many authors, yet it has not been introduced to the micromodelling of semicrystalline polymeric materials such as polyethylene. Regarding the material representation, the microstructure is simplified as an aggregate of randomly oriented and perfectly bonded crystals. To simulate large deformations, the new constitutive model attempts to take into account existence of intracrystalline microcracks. The second part of the work presents the theoretical formulation and numerical implementation of a three-dimensional constitutive model for the mechanical behaviour of semicrystalline polyethylene. The model proposed herein attempts to describe the deformation and degradation process in semicrystalline polyethylene following the approach of damage mechanics. Structural degradation, an important phenomenon at large deformations, has not received sufficient attention in the literature. The modifications to the constitutive equations consist essentially of introducing the concept of Continuum Damage Mechanics to describe the rupture of the intermolecular (van der Waals) bonds that hold crystals as coherent structures. In order to model the mechanical behaviour, the material morphology is simplified as a collection of inclusions comprising the crystalline and amorphous phases with their characteristic average volume fractions. In the spatial arrangement, each inclusion consists of crystalline material lying in a thin lamella attached to an amorphous layer. To consider microstructural damage, two different approaches are analyzed. The first approach assumes damage occurs only in the crystalline phase, i.e., degradation of the amorphous phase is ignored. The second approach considers the effect of damage on the mechanical behaviour of both the amorphous and crystalline phases. To illustrate the proposed constitutive formulations, the models were used to predict the responses of crystalline and semicrystalline polyethylene under uniaxial tension and simple shear. The numerical simulations were compared with experimental data previously obtained by Bartczak et al. (1994), G‘Sell and Jonas (1981), G‘Sell et al. (1983), Hillmansen et al. (2000), and Li et al. (2001). Our model’s predictions show a consistently good agreement with the experimental results and a significant improvement with respect to the ones obtained by Parks and Ahzi (1990), Schoenfeld et al. (1995), Yang and Chen (2001), Lee et al. (1993b), Lee et al. (1993a), and Nikolov et al. (2006). The newly proposed formulations demonstrate that these types of constitutive models based on Continuum Damage Mechanics are appropriate for predicting large deformations and failure in polyethylene materials.
6

Micromechanical Modelling of Polyethylene

Alvarado Contreras, Jose Andres 11 1900 (has links)
The increasing use of polyethylene in diverse applications motivates the need for understanding how its molecular properties relate to the overall behaviour of the material. Although microstructure and mechanical properties of polymers have been the subject of several studies, the irreversible microstructural rearrangements occurring at large deformations are not completely understood. The purpose of this thesis is to describe how the concepts of Continuum Damage Mechanics can be applied to modelling of polyethylene materials under different loading conditions. The first part of the thesis consists of the theoretical formulation and numerical implementation of a three-dimensional micromechanical model for crystalline polyethylene. Based on the theory of shear slip on crystallographic planes, the proposed model is expressed in the framework of viscoplasticity coupled with degradation at large deformations. Earlier models aid in the interpretation of the mechanical behaviour of crystalline polyethylene under different loading conditions; however, they cannot predict the microstructural damage caused by deformation. The model, originally due to Parks and Ahzi (1990), was further developed in the light of the concept of Continuum Damage Mechanics to consider the original microstructure, the particular irreversible rearrangements, and the deformation mechanisms. Damage mechanics has been a matter of intensive research by many authors, yet it has not been introduced to the micromodelling of semicrystalline polymeric materials such as polyethylene. Regarding the material representation, the microstructure is simplified as an aggregate of randomly oriented and perfectly bonded crystals. To simulate large deformations, the new constitutive model attempts to take into account existence of intracrystalline microcracks. The second part of the work presents the theoretical formulation and numerical implementation of a three-dimensional constitutive model for the mechanical behaviour of semicrystalline polyethylene. The model proposed herein attempts to describe the deformation and degradation process in semicrystalline polyethylene following the approach of damage mechanics. Structural degradation, an important phenomenon at large deformations, has not received sufficient attention in the literature. The modifications to the constitutive equations consist essentially of introducing the concept of Continuum Damage Mechanics to describe the rupture of the intermolecular (van der Waals) bonds that hold crystals as coherent structures. In order to model the mechanical behaviour, the material morphology is simplified as a collection of inclusions comprising the crystalline and amorphous phases with their characteristic average volume fractions. In the spatial arrangement, each inclusion consists of crystalline material lying in a thin lamella attached to an amorphous layer. To consider microstructural damage, two different approaches are analyzed. The first approach assumes damage occurs only in the crystalline phase, i.e., degradation of the amorphous phase is ignored. The second approach considers the effect of damage on the mechanical behaviour of both the amorphous and crystalline phases. To illustrate the proposed constitutive formulations, the models were used to predict the responses of crystalline and semicrystalline polyethylene under uniaxial tension and simple shear. The numerical simulations were compared with experimental data previously obtained by Bartczak et al. (1994), G‘Sell and Jonas (1981), G‘Sell et al. (1983), Hillmansen et al. (2000), and Li et al. (2001). Our model’s predictions show a consistently good agreement with the experimental results and a significant improvement with respect to the ones obtained by Parks and Ahzi (1990), Schoenfeld et al. (1995), Yang and Chen (2001), Lee et al. (1993b), Lee et al. (1993a), and Nikolov et al. (2006). The newly proposed formulations demonstrate that these types of constitutive models based on Continuum Damage Mechanics are appropriate for predicting large deformations and failure in polyethylene materials.
7

Role Of Boron On The Evolution Of Microstructure And Texture In Ti-6AL-4V-0.1B Alloy

Roy, Shibayan 07 1900 (has links) (PDF)
Titanium and its alloys constitute an important class of materials for aerospace, biomedical, and chemical industries, primarily due to their high specific strength and fracture toughness with good corrosion resistance. Owing to their hexagonal crystal structure at room temperature, both microstructure and texture play a crucial role in the processing and hence the properties of titanium alloys. The basis for tailoring the microstructure and texture in titanium alloys centers around the transformation of high temperature β (body-centered cubic) to the low temperature α (hexagonal close packed) phase. One of the most widely used titanium alloy is Ti-6Al-4V, which exists as two phase (α+β) alloy at room temperature. The cast structure of the alloy Ti-6Al-4V is generally coarse and has strong solidification texture that leads to inferior properties. Recently, trace boron addition has been reported to produce substantial refinement in cast microstructure for Ti-6Al-4V. Significant improvements in some of the mechanical properties have been reported for the Ti-6Al-4V-0.1B alloy in the as-cast condition. The reasons for microstructural refinement in the boron modified alloy and associated improvements in properties, however, needs to be investigated since the property attributes strongly depend on finer microstructural details including crystallographic texture. In addition, the titanium alloys are processed through thermo-mechanical treatments that involve deformation and annealing response of the alloy. The effect of boron modification on the processing response during thermo-mechanical treatments (TMP) has also not been studied. All these aspects shape the framework of the thesis, wherein microstructure and texture evolution is probed from starting cast condition through different stages of TMP. Micro-mechanisms are identified at every stage from the interrelation of these two intrinsic factors. In the first part of the study, the spatial variation of microstructure and texture in the cast ingot has been studied using SEM-EBSD technique. It has been found that trace boron addition (0.1 wt%) to Ti-6Al-4V alloy ensures excellent microstructural homogeneity throughout the cast ingot. A subdued thermal gradient due to constitutional undercooling persists during solidification and maintains equivalent β grain growth kinetics at different locations in the ingot. For Ti-6Al-4V-0.1B alloy, both high temperature β and room temperature α phase textures weaken. The microstructural attributes of boron addition manifests as the absence of grain boundary α-phase and the presence of TiB particles. Both these features strongly affect the mechanism of β→α phase transformation and consequently weaken the α phase texture. The evolution of microstructure and texture during β-processing of Ti-6Al-4V-0.1B alloy is examined in the second part of the work. Boron modified alloy shows the typical features of β worked microstructure with fine prior β grains, however without the formation of shear bands, which is generally observed in the microstructure of β worked Ti-6Al-4V alloy. The transformed α texture is almost same for the two alloys indicating similarity in the transformation behaviour of boron modified and boron free Ti-6Al-4V alloy due to complete dynamic recrystallization during β processing. The microstructural features as well as the crystallographic texture indicates dominant grain boundary sliding for the boron added alloy which leads to homogeneous deformation response without instability (shear band) formation. In the third part of the study, the deformation response in the (α+β) regime has been studied by carrying out hot compression tests at different temperature under constant true strain rate to simulate experimental processing conditions for the cast Ti-6Al-4V-0.1B alloy. The critical combinations of temperature and strain rate suitable for processing are identified based on flow curves and kinetic analyses. Microstructural features display dynamic recovery of the α-phase at low temperatures and softening due to globularization and/or dynamic recrystallization at high temperatures irrespective of boron addition. The transition temperature for the two mechanisms is comparatively lower for boron added alloy. Unlike Ti-6Al-4V, no sign of instability formation has been observed in Ti-6Al-4V-0.1B. The absence of macroscopic instabilities and early initiation of softening mechanisms has been attributed to microstructural features and texture of boron modified alloy in the initial as-cast condition. In the fourth part, the large strain deformation response has been studied for the Ti-6Al-4V-0.1B alloy by rolling in the (α+β) regime. Microstructure in near α rolling regime is characterized by a few kinked and bent α colonies while others are elongated along the rolling direction. Dynamic softening at higher temperatures is more dominant for the boron added alloy. Microstructural features are strongly orientation sensitive while relative differences are inherited from the starting cast alloys. Texture evolution, however, does not markedly vary for the two alloys and indicates little difference in the slip based deformation processes under plane strain condition. The influence of transformation texture appears early for the boron added alloy and affects the final texture in much stronger way at higher temperature. Subsequent to the (α+β) rolling, static annealing of warm rolled alloys has been carried out. A faster annealing kinetics for boron added alloy has been observed, which is related to deformation prior to annealing leading to additional diffusion pathways due to microstructural factors. Texture of the annealed material is similar to the deformed state for shorter annealing times but substantially modifies by epitaxial growth of primary α phase during long time annealing. The final part of the work deals with the deformation response of boron added alloy under superplastic conditions. Out of the two alloys with similar microstructure and texture, higher elongation for boron modified alloy is justified by the absence of slip based deformation and improved grain boundary sliding. Increase in α/β interfaces due to globularization during warm rolling and static annealing contribute to the grain boundary sliding. The outcomes of the thesis have been presented as a summary at the end and suggestions have been made indicating the scope for future investigations pertaining to this area.
8

Some Critical Issues Pertaining To Deformation Texture In Close-Packed Metals And Alloys : The Effect Of Grain Size, Strain Rate And Second Phase

Prakash, Gurao Nilesh 07 1900 (has links) (PDF)
Crystallographic texture in polycrystalline materials are known to play an important role in tailoring suitable properties for various technological applications. In addition, the evolution of texture provides a profound basis to develop scientific understanding of physical processes occurring in the material during deformation and annealing. Between the two, the understanding of deformation texture is much broader. However, certain issues pertaining to the evolution of deformation texture evolution are yet to be explored or not uniquely agreed upon. A few notable examples are the effects of extreme grain sizes and strain rates. Moreover, most of the studies are pertaining to single phase metals and alloys. While many engineering alloys consist of two phase microstructures, the effect of second phase in the microstructure on the evolution of texture in the individual phases has not been studied in a comprehensive manner. The present thesis is an attempt to addresses these issues in a more generic manner. The studies have been specifically aimed at examining the aforesaid issues in the close packed Face Centre Cubic (FCC) and Hexagonal Close Packed (HCP) metals and alloys. In brief, this thesis addresses the following problems pertaining to deformation texture: (i) the effect of extreme grain sizes, (ii) the effect of extreme strain rates and (iii) the effect of a second ductile phase. Chapter 1 of the thesis gives a detailed survey of literature pertaining to the evolution of deformation textures in different metals and alloys, while chapter 2 includes the details of the experimental techniques and simulation procedures, which are mostly common for the entire work. The issue of grain size is addressed in chapter 3. In the present investigation, the evolution of deformation texture in nickel (FCC) and titanium (HCP) with the extreme grain sizes (nanometre and millimetre) has been studied. Nanocrystalline nickel with the grain size ~ 20 nm was obtained by pulse electro-deposition while the other extreme of the grain size in nickel was obtained by annealing of a cold rolled sheet at 1373 K. The rolling texture in nanocrystalline nickel had a higher volume fraction of Brass component than in nickel with normal grain size. These results have been explained on the basis of inhibition of cross slip in small grain sizes and the operation of planar slip. This has been validated by viscoplastic self-consistent simulations. The texture of coarse grain nickel samples (typified as oligocrystalline, owing to the lesser number of grains in the thickness direction) also had higher Brass component like the nanocrystalline sample. A detailed analysis was performed by examining misorientation development in the grain interior and in the vicinity of the grain boundaries. The similarity at the two extreme length scales has been explained on the basis of lower “Grain Boundary Affected Zone” at the extreme length scales. To examine the effect of grain size in the case of HCP materials, commercially pure titanium with ultra-fine (500 nm) and normal grain size (~50 μm), was investigated. A monotonic evolution of texture was observed in the former, which has been attributed to the absence of twinning, a situation that could arise due to the lack of coordinated movement of twinning partials in the sub-micron grain size regime. Thus, a reasonable understanding of the evolution of deformation texture in hitherto unexplored regime of grain sizes was developed for the two materials. The chapter 4 of the thesis is dedicated to the study of strain rate effects in both FCC and HCP materials. The issue of strain rate has been addressed by two ways: (a) deforming the materials at extreme strain rates, namely 10-3 s-1 to 10+3 s-1 under compression up to a reasonable strain, and (b) deforming the materials under torsion within a reasonable range of strain rates, but up to large strains. In this case, in addition to nickel, copper was also investigated owing to the different strain hardening behaviour of the two materials. The compression texture in nickel and copper was characterized by the presence of <101> component at low strain rates. At high strain rate, ~10+3 s-1, there was a decrease in the intensity of the <101> component for nickel but it strengthened for copper. This has been explained on the basis of continuous dynamic recrystallization in copper. The torsion texture evolution in nickel and copper was similar at low strain rate (10-3 s-1) and was characterized by the presence of important shear texture components. At high strain rate (1 s-1), texture weakened for nickel, while for copper a rotated cube component was observed which has been attributed to dynamic recrystallization. The effect of strain rate was studied more comprehensively in hexagonal titanium by adding one more variable, that is, the initial texture. Extreme strain rates were imparted using static and dynamic compression tests. It was found that different initial textures led to different mechanical response in terms of yield strength and strain hardening as well as microstructural response in terms of twin fractions. The samples deformed at high strain rate showed increased twinning that led to some scatter in the texture components compared to low strain rate deformed samples. VPSC simulations were able to successfully capture the evolution of texture as well as microstructural evolution in terms of twin activity in the deformed samples at the extreme strain rates. Torsion tests on titanium at different strain rates indicated evolution of inhomogeneous nature of fibre texture components with increase in strain rate. Thus, weakening of texture was observed irrespective of the strain path (compression or torsion) and crystal structure (FCC or HCP) unless additional restoration mechanism like recrystallization (continuous or discontinuous) intervened. In chapter 5, the evolution of rolling texture in two phase FCC + BCC (Ni-Fe-Cr alloys) and HCP + BCC (Ti-13Nb-13Zr ) alloys has been studied. This study was aimed at examining the effect of second deforming phase on the texture evolution in the primary phase. The effect of various parameters like volume fraction and morphology of the second phase on deformation texture evolution was studied experimentally as well as by VPSC simulations. A reduction in the Brass component of texture was observed in the austenite phase due to the presence of harder ferrite phase while a characteristic rolling texture evolved in the ferrite phase. It has been established that the softer austenite phase carried maximum strain at low volume fractions of ferrite while the harder ferrite phase carried the maximum strain at higher volume fractions of ferrite. In case of the two phase HCP+BCC alloy Ti-13Nb-13Zr, both the hexagonal α and the cubic β phases showed a characteristic rolling texture irrespective of two different morphologies. For both the equiaxed and colony microstructures, the softer β phase carried the maximum strain. VPSC simulations were able to model the deformation texture evolution as well as microstructural parameters like strain partitioning and twin fraction satisfactorily for both the microstructural conditions. It was found that the deformation mechanism in one phase could be affected by the presence of the second phase and that a characteristic change in deformation texture could be produced in the presence of the second phase. Thus, a comprehensive perspective has been developed pertaining to the evolution of texture in FCC and HCP phases in the presence of a second ductile phase. The overall findings of the three investigations carried out for the thesis are summarised in chapter 6.
9

Consolidation des poudres métalliques par des déformations plastiques extrêmes : torsion sous haute pression : expériences et modélisations / Consolidation of Metal Powders through Severe Plastic Deformation : High Pressure Torsion : Experiments and Modeling

Zhao, Yajun 29 February 2016 (has links)
Les procédés d’hyper-déformations (SPD) peuvent imposer de très grandes déformations à un métal et en transformer les propriétés métallurgiques de la matière en introduisant une forte densité de dislocations et un important affinement de la microstructure. Dans ce travail de thèse présenté, des expériences en torsion à haute pression (HPT) ont été réalisées pour la consolidation des différentes poudres de fer de taille à l’échelle nano et micrométrique. Ces expériences ont été effectuées avec succès à la température ambiante aboutissant à la fois à un faible niveau de porosité résiduelle et l'affinement significatif de la taille de grain, grâce à une importante déformation en cisaillement et à de la pression hydrostatique appliquée au procédé HPT. La compression a été faite en deux étapes: d'abord une compression axiale, puis déformation en cisaillement en tournant la partie inférieure de la filière HPT tout en maintenant constante la force axiale. L'homogénéité de la déformation en cisaillement à travers l'épaisseur du disque a été examinée par une mesure de déformation locale, qui montre une distribution du gradient. L'analyse par diffraction à rayons X a été réalisée sur des échantillons consolidés qui ont révélé une proportion peu importante d’oxydes. L'effet de la déformation en cisaillement sur la microstructure et la texture a été étudié par microscopie électronique à balayage et EBSD. La micro-dureté et la porosité moyenne des échantillons en fonction de la déformation en cisaillement, à pression hydrostatique constante, ont également été mesurées. Une trame de modélisation mise en œuvre dans le modèle de Taylor a été développée pour simuler l'effet du glissement aux joints de grains pour l'évolution de la texture cristallographique. Le principal effet constaté est un décalage des orientations idéales dans les conditions de cisaillement simple, ce qui a été vérifié expérimentalement. Le procédé de consolidation par HPT a été simulé numériquement en utilisant la méthode des éléments finis pour un modèle de plasticité des poudres. La simulation de ce dernier a permis de confirmer la porosité résiduelle moyenne observée expérimentalement et les différents gradients de la déformation plastique. La distribution de la densité locale a également été modélisée / Severe plastic deformation (SPD) processes can impose extremely large strains to a metal and transforming the metallurgical state of the material by introducing high dislocation density and high level of microstructure refinement. In the present thesis work High Pressure Torsion (HPT) experiments were performed for consolidation of different powders including Nano- and Micro- scaled iron powders. The experiments were carried out successfully at room temperature, achieving both low level of residual porosity and significant grain refinement, thanks to the intense shear strain and hydrostatic pressure applied in HPT. The compaction was done in two steps: first axial compaction, then shear deformation by rotating the bottom part of the HPT die while maintaining the axial force constant. The homogeneity of shear strain across the thickness of the disk was examined by local strain measurement, showing a gradient distribution. X-ray diffraction analysis was carried out on the consolidated samples which revealed no significant proportion of oxides. The effect of shear deformation on the microstructure and texture was investigated by metallographic scanning electron microscopy and electron backscattered diffraction (EBSD). The micro-hardness and average porosity of the samples as a function of shear strain at constant hydrostatic pressure were also measured. A modeling frame implemented into the Taylor model was developed to simulate the effect of Grain Boundary Sliding (GBS) on the evolution of crystallographic texture. The main effect found is a shift of the ideal orientations under simple shear conditions, which was verified experimentally. The consolidation process by HPT was simulated numerically using the finite element method together with a powder plasticity model. The simulation of the consolidation process permitted to confirm the experimentally observed average residual porosity and the different gradients in the plastic strain. The local density distribution was also modeled
10

Simulation of large deformation response of polycrystals, deforming by slip and twinning, using the viscoplastic Ø-model / Simulation du comportement mécanique en grandes déformations viscoplastiques des matériaux polycristallins en considérant le glissement et le maclage cristallographiques et en utilisant le modèle-phi

Wen, Wei 05 May 2013 (has links)
Le calcul de la réponse macroscopique des agrégats polycristallins à partir des propriétés de leurs constituants est un problème important en mécanique des matériaux. Lors de la déformation plastique, les grains du matériau sont réorientés. Une texture cristallographique, responsable de l'anisotropie, peut alors se développer. Donc, la modélisation de l'évolution de la texture est importante afin de prévoir les effets d'anisotropie lors des procédés industriels.La formulation de la plasticité des polycristaux métalliques a fait l'objet de nombreuses études et différentes approches d’homogénéisation ont été proposées. En 2008, Ahzi et M'Guil ont développé un modèle viscoplastique, baptisé le modèle-phi. Ce modèle prend en compte les effets d'interaction entre les grains sans passer par la théorie de l'inclusion d’Eshelby. Dans ce travail, le modèle-phi a été appliqué à différentes structures cristallographiques et sous différentes conditions de chargement. Le mécanisme de maclage a été pris en compte. Pour le laminage des métaux CFC, la transition de texture du type cuivre au type laiton a été étudiée. L’essai de cisaillement des métaux CFC a été également étudié. Nous montrons que le modèle est capable de prédire une transition de texture de cisaillement caractérisant une gamme de métaux CFC ayant une EDE élevée/moyenne à une EDE faible. Dans une étude dédiée aux métaux CC, nous avons comparé nos résultats à ceux prédits par un modèle auto-cohérent. Nous présentons également une comparaison avec des textures expérimentales de laminage à froid issues de la littérature. Le modèle a également été étendu aux métaux HC. Nous avons simulé le comportement de déformation d’un alliage de magnésium pour différentes niveaux d'interaction inter-granulaire. Nous montrons que le modèle prédit des résultats en bon accord avec les résultats expérimentaux. / The computation of the macroscopic response of polycrystalline aggregates from the properties of their single-crystal is a main problem in materials mechanics. During the mechanical deformation processing, all the grains in the polycrystalline material sample are reoriented. A crystallographic texture may thus be developed which is responsible for the material anisotropy. Therefore, the modeling of the texture evolution is important to predict the anisotropy effects present in industrial processes. The formulation of polycrystals plasticity has been the subject of many studies and different approaches have been proposed. Ahzi and M’Guil developed a viscoplastic phi-model. This model takes into account the grains interaction effects without involving the Eshelby inclusion problems.In this thesis, the phi-model was applied to different crystallographic structures and under different loading conditions. The mechanical twinning has been taken into account in the model. The FCC rolling texture transition from copper-type to brass-type texture is studied. The shear tests in FCC metals are also studied. The predicted results are compared with experimental shear textures for a range of metals having a high SFE to low SFE. For BCC metal, we compare our predicted results with those predicted by the VPSC model. We study the slip activities, texture evolutions and the evolution of yield loci. We also present a comparison with experimental textures from literatures for several BCC metals under cold rolling tests. The model has also been extended to HCP metals. We predict the deformation behavior of the magnesium alloy for different interaction strengths. We also compare our predicted results with experimental data from literatures. We show that the results predicted by the phi-model are in good agreement with the experimental ones.

Page generated in 0.148 seconds