• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 87
  • 14
  • 10
  • 7
  • 4
  • 2
  • 1
  • Tagged with
  • 149
  • 101
  • 34
  • 30
  • 27
  • 17
  • 16
  • 16
  • 14
  • 13
  • 13
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Influence du changement climatique et des conditions extrêmes sur les massifs fracturés : rôle des fluides (H2O, CO2) dans leur processus d’altération / Influence of climate change and extreme conditions on fractured rock mass : role of fluids (H2O, CO2) in its weathering process

Saad, Alice 21 September 2011 (has links)
L'objectif de ce travail est de comprendre le processus d'altération des calcaires oolithiques et d'estimer leur cinétique d'altération en fonction des conditions climatiques présentes en France. Pour y répondre, des cycles de vieillissement accéléré, basés sur les paramètres issus de l'étude bibliographique et sur les données de température et de précipitations réelles, ont été définis. Ensuite, des lots d'échantillons de deux calcaires oolithiques ont subis ces vieillissements. Les mesures réalisées pour déterminer l'endommagement ont été choisies en fonction de leurs caractéristiques métrologiques et de leur pertinence. Les résultats obtenus ont été comparés avec les mêmes mesures réalisées sur des calcaires altérés de façon naturelle prélevés sur site. Ainsi, les liens entre le processus d'altération des calcaires et les caractéristiques mécaniques, physiques et surtout microstructurales des calcaires ont été établis. Cette analyse a également abouti à des cinétiques d'altération. Les résultats ont été validés par l'étude d'un autre calcaire oolithique sous d'autres conditions climatiques. Enfin, l'influence de changements climatiques éventuels sur les cinétiques d'altération a été déterminée à l'aide d'un outil statistique / The objective of this work is to understand the weathering process of oolitic limestone and estimate their weathering kinetics under French climatic conditions. Accelerated ageing cycles, based on parameters deduced from a literature review and on temperature and precipitation data, have been defined. Then samples of two oolitic limestones have undergone these ageing. The measurements used to determine damage were chosen based on their metrological characteristics and their relevance. The results were compared with the same measurements performed on naturally weathered limestone. Thus, the relationships between the weathering process of oolitic limestone and their mechanical, physical and microstructural characteristics have been established. This analysis also led to weathering kinetics. The results were validated by the study of another oolitic limestone under different climatic conditions. Finally, the influence of a potential climate change on the weathering kinetics was determined using a statistical tool
72

The Effects of Freeze-Thaw Cycles on the Infiltration Rates of Three Bioretention Cell Soil Mixtures

Baratta, Vanessa Marrie 01 July 2013 (has links)
The expansion of urban and suburban areas is a world-wide phenomena. One product of this development is a dramatic increase in impermeable surfaces and a consequent increase in stormwater runoff. Bioretention cells are one best management practice frequently used to mitigate the environmental impacts of urban stormwater runoff. To ensure that a bioretention cell will continue to perform adequately in the long term, it is imperative that the environmental conditions it will experience and their effect on its performance through time are considered during its design. Although bioretention cells are frequently used for stormwater management, very few quantitative data exist on how they perform through time and in varied physical environments. In regions with seasonal freeze-thaw cycles, it is important to understand the effects of freeze-thaw cycles on the infiltration rate of bioretention cell soil mixtures so that the integrity of the design will not be compromised by seasonal change. This project uses laboratory tests to investigate the effects of freeze-thaw cycles and sediment input on the infiltration capacity of three different bioretention cell soil mixtures. These results will provide an analog for long-term changes in bioretention cell infiltration rates due to freeze-thaw cycles, providing critical data on which soil mixture would be best implemented in geographic regions susceptible to freeze-thaw activity. Furthermore these results will inform design standards for bioretention cells to ensure their long-term performance.
73

The potential disturbance of the 210Pb profile in peat cores by roots and the implications for 210Pb dating.

Spjut, Nora January 2020 (has links)
At this moment there is a gap in information regarding the affect roots might have on 210Pb distribution in peat cores and in turn the obtained chronologies by 210Pb dating. Therefore, four peat cores were collected from the snow manipulation study site within the mire complex Storflaket (68°20048″N, 18°58016″E). Two cores from snow fence plots, which has experienced root growth due to permafrost thaw, and 2 cores from control plots. 210Pb distribution and the provided 210Pb chronologies were then compared with root content within and between the cores. In two of the cores (C5 and SF2) did subsurface peaks in the 210Pb activity profile follow the distribution profile of the dwarf shrub roots. The same pattern was not seen with Eriophorum roots. This indicates that presence of dwarf root with their shallow and horizontally growth can affect the 210Pb profile by horizontal translocation of 210Pb. The chronologies obtained by the CF:CS and CRS dating models could not be validated for the C5 core which suggest that dwarf shrub roots also can affect the 21oPb dating.
74

The potential disturbance of the 210Pb profile in peat cores by roots and the implications for 210Pb dating.

Spjut, Nora January 2020 (has links)
At this moment there is a gap in information regarding the affect roots might have on 210Pb distribution in peat cores and in turn the obtained chronologies by 210Pb dating. Therefore, four peat cores were collected from the snow manipulation study site within the mire complex Storflaket (68°20048″N, 18°58016″E). Two cores from snow fence plots, which has experienced root growth due to permafrost thaw, and 2 cores from control plots. 210Pb distribution and the provided 210Pb chronologies were then compared with root content within and between the cores. In two of the cores (C5 and SF2) did subsurface peaks in the 210Pb activity profile follow the distribution profile of the dwarf shrub roots. The same pattern was not seen with Eriophorum roots. This indicates that presence of dwarf root with their shallow and horizontally growth can affect the 210Pb profile by horizontal translocation of 210Pb. The chronologies obtained by the CF:CS and CRS dating models could not be validated for the C5 core which suggest that dwarf shrub roots also can affect the 21oPb dating.
75

Effect of different equilibration periods pre-cryopreservation on post-thaw sperm motility in Nguni and Boran bulls

Van Staden, Elizabeth 30 June 2011 (has links)
Compared to natural selection, the use of artificial insemination (AI) and other reproductive technologies rapidly increase the rate of genetic change in any population. In order to achieve success with AI, the semen used to inseminate cows must be of the highest possible quality. When semen is frozen, generally only about 50% of the spermatozoa survive the cryopreservation process. Thus, any factors possibly affecting the survival of spermatozoa through the numerous freezing-thawing steps should be studied, in order to identify the optimal conditions for the survival of spermatozoa. The discovery of protective agents within egg yolk and glycerol was a major milestone in sperm cryopreservation. These agents protect bovine spermatozoa during cooling and freezing procedures and result in increased survival rates. Cryopreservation of spermatozoa has become the most common technique for the preservation of male fertility of genetically superior sires even after their death. Using cryopreserved sperm to artificially inseminate females has become standard practice in commercial dairy cattle herds and the application of this reproductive management tool is also expanding to beef herds worldwide. The use of glycerol as a cryoprotectant for bovine spermatozoa is credited as the reason for the success in bovine semen cryopreservation. The purpose of this research was to quantify the effects of different cooling periods, as well as different glycerol equilibration periods on the post-thaw motility percentages and recovery fractions of semen collected from Boran and Nguni bulls. The research was subdivided into two experiments. In each experiment different cooling and glycerol equilibration times were researched. The first experiment involved shorter cooling times (30, 60, 120 and 240 minutes) with each cooling time followed by several longer equilibration times (4, 5, 6, 7 and 8 h). In the second experiment the cooling and equilibration times from the first experiment were reversed. This resulted in longer cooling times (4, 5, 6, 7 and 8 h) with each cooling time having shorter glycerol equilibration times (30, 60, 120 and 240 minutes). An egg yolk-Tris two-step extender was used in both the experiments. The general trend for the glycerol equilibration periods studied in Experiment 1 was that the resulting overall average post-thaw motility percentage and average recovery fraction increased with longer periods. There was a breed difference when comparing the average post-thaw motility percentages after 4, 5, 6 and 8 h (p<0.05), while the average post-thaw motility percentages also tended to differ after 7 h of equilibration. The general trend observed for equilibration periods used in Experiment 2 was that the average post-thaw motility percentage increased as glycerol equilibration period increased up to 120 minutes, but after 240 minutes of glycerol equilibration, there was a slight decline. The differences in average post-thaw motility percentage after the respective glycerol equilibration periods were not statistically significant. The results of each experiment were used to create a matrix that can be used in practice. The matrix using results from Experiment 1 demonstrated that a cooling period glycerol equilibration period combination of 240 minutes and 7 h resulted in the highest (not significantly different from most other combinations) average post-thaw motility rates. The matrix formed from the results of Experiment 2 demonstrated that an 8 h cooling period combined with a 60 minute glycerol equilibration period yielded the highest (not significantly different from most other combinations), average post-thaw motility percentage. / Dissertation (MSc(Agric))--University of Pretoria, 2010. / Animal and Wildlife Sciences / unrestricted
76

Freeze-Thaw Induced Gully Erosion: A Long-Term High-Resolution Analysis

Luffman, Ingrid, Nandi, Arpita 13 September 2019 (has links)
Gullies are significant contributors of sediment to streams in the southeastern USA. This study investigated gully erosion in the clay-rich soils of east Tennessee under a humid subtropical climate. The aims of this study were to (1) estimate long-term erosion rates for different gully geomorphic settings, (2) compare patterns of erosion for the different settings, and (3) model the response of gully erosion to freeze-thaw events. Erosion was measured weekly from June 2012 to August 2018 using 105 erosion pins distributed in gully channels, interfluves, and sidewalls. Erosion rates were estimated from average slopes of lines of best fit of pin lengths versus time. Maximum and minimum temperature was calculated daily using an on-site weather station and freeze-thaw events were identified. Gully erosion was modeled using antecedent freeze-thaw activity for the three geomorphic settings. Long-term erosion rates in channels, interfluves, and sidewalls were 2.5 mm/year, 20 mm/year, and 21 mm/year, respectively; however, week-by-week erosion was statistically different between the three settings, indicating different erosive drivers. Models of erosion with lagged freeze-thaw variables explained up to 34.8% of the variability in erosion variables; sidewall erosion was most highly related to freeze-thaw activity. Freeze-thaw in prior weeks was an important variable in all erosion models.
77

Interpretation of the Frozen Soils Behavior Extending the Mechanics of Unsaturated Soils

Ren, Junping 28 August 2019 (has links)
Soil is the most widely used material in the construction of various civil infrastructure. Various types of soils are extensively used in its natural or compacted form in the construction of dams, canals, road and railway subgrades, and waste containment structures such as soil covers and liners. These infrastructure and foundation soils are exposed to the influence of environmental factors. In the permafrost and seasonally frozen regions, soils can be in different states (e.g., saturated or unsaturated, frozen or thawed, or combinations of them) due to the variations in moisture content and temperature. The soil-water characteristic curve (SWCC), which is the relationship between soil water content and suction, is used in the interpretation and prediction of unsaturated soils behavior. Similarly, the soil-freezing characteristic curve (SFCC), which is the relationship between unfrozen water content and subzero temperature, is used in the prediction and interpretation of frozen soils behavior. In this thesis, the SWCC and SFCC of two Canadian soils (i.e. Toronto silty clay (TSC) and Toronto lean clay (TLC)) were extensively investigated for better understanding the fundamental relationship between SWCC and SFCC. The soil resilient modulus (MR) is a key material property used in the rational design of pavements. Experimental investigations were undertaken to determine the MR of five Canadian soils (i.e., TSC, TLC, Kincardine lean clay (KLC), Ottawa Leda clay (OLC), and Indian Head till (IHT)), considering the influence of moisture and temperature, with the aid of an advanced triaxial testing equipment. Two simple models were proposed for estimating the MR of frozen soils, in this thesis. In addition, an artificial neural network (ANN) model was developed for estimating the MR of the five Canadian soils considering various influencing factors. The conclusions from the various studies in this thesis are succinctly summarized below. (1) Four expressions (i.e. power relationship, exponential relationship, van Genuchten equation, and Fredlund and Xing equation) that are widely used for representing the SFCC were selected for providing comparisons between the measured and fitted SFCCs for different soils. The results suggest that the exponential relationship and van Genuchten equation are suitable for sandy soils. The power relationship reasonably fits the SFCC for soils with different particle sizes, but not for saline silts. The Fredlund and Xing equation is flexible and provides good fits for all the soils. (2) The SFCC and SWCC of TSC and TLC were experimentally determined, analyzed, and compared. Many factors influence the reliable measurement of SFCC, which include sensors’ resolution and stability, sensor calibration for each soil, and thermodynamic equilibrium condition. The hysteresis of SFCC for the two soils is mainly attributed to the supercooling of pore water. The quantitative dissimilarity in the measured SFCC and SWCC may be attributed to specimen structure variations during compaction and saturation, and during freezing / thawing processes, and cracks formation due to sensors insertion. In addition, some fundamental differences may exist between the drying / wetting and freezing / thawing processes, resulting in dissimilarity. (3) Two novel models were proposed for the estimation of MR of frozen soils. The semi-empirical model extends the mechanics of unsaturated soils and employs SFCC for prediction. Several coarse- and fine-grained saturated soils were used to validate this model. The empirical hyperbolic model was proposed considering that the frozen MR versus subzero temperature relationship resembles hyperbola. This model was validated on coarse- and fine-grained soils under saturated / unsaturated conditions. The hyperbolic model has wider application since it can be used for both saturated and unsaturated frozen soils. Both the models are simple and promising. (4) The MR of five Canadian soils subjected to wetting and freezing was determined by using the GDS ELDyn triaxial testing system. A freezing system was established for controlling the desired testing temperatures within the soil specimens. The results suggest: (i) The effect of subzero temperature on the MR is significant. (ii) For TLC, KLC, OLC, and IHT, the frozen MR versus subzero temperature relationship of the saturated specimen typically has steeper slope than specimen at the optimum water content, for the temperature range from 0 to -5 °C. (iii) The effect of stress levels on the frozen MR depends on soil type, water content, and subzero temperature. Lastly, (iv) Loading frequency does not show a significant influence on the frozen MR. (5) The MR of the five Canadian soils was determined considering wetting and freeze-thaw (F-T) conditions. The results suggest: (i) The F-T cycles result in weak soil structure due to reduction in suction, particles movement, loss of cohesion, and formation of cracks / channels. (ii) The critical numbers of F-T cycles were determined as 1, 1, 2, and 1 for TLC, KLC, OLC, and IHT at the optimum water content, respectively. (iii) The percentage of reduction in MR after the critical number of F-T cycles was strongly related to the plasticity index for specimens tested at the optimum water content. (iv) The wetting process results in the decrease in suction and enlargement of soil pores. Consequently, relatively low MR values were measured at high water contents, and the effect of F-T cycles becomes insignificant. Finally, (v) The effect of stress levels on the MR was dependent on the initial water content of the specimen and soil type.
78

Effect of Saline Immersion and Freeze-Thaw Cycles on Performance of Fused Deposition Modelling (FDM) Materials

Darwish, Omar Mohamed 30 May 2019 (has links)
No description available.
79

EFFECT OF MINERAL ADMIXTURES AND COARSE AGGREGATE SIZE ON COMPRESSIVE STRENGTH AND FREEZE-THAW RESISTANCE OF PORTLAND CEMENT CONCRETE

McDonnell, Thomas Francis 08 August 2007 (has links)
No description available.
80

Changes in Streambank Erodibility and Critical Shear Stress Due to Surface Subaerial Processes

Henderson, Marc Bryson 19 September 2006 (has links)
Previous studies have shown that soil erodibility and critical shear stress are highly influenced by weathering processes such as freeze-thaw cycling and wet-dry cycling. Despite over forty years of research attributing changes in soil properties over time to climate-dependent variables, little quantitative information is available on the relationships between streambank erodibility and critical shear stress and environmental conditions and processes that enhance streambank erosion potential. The goal of this study was to investigate temporal changes in streambank erodibility and critical shear stress due to surface weathering. Soil erodibility and critical shear stress were measured monthly in situ using a multi-angle submerged jet test device. Environmental and soil data were also collected directly at the streambank surface to determine freeze-thaw cycles, soil moisture, soil temperature, bulk density, soil erodibility, critical shear stress, and other atmospheric conditions that could impact bank erosion potential. Statistical tests, including a nonparametric alternative to ANOVA and multiple comparison tests, were used to determine if temporal changes in soil erosion potential were greater than spatial differences. Regression analyses were also utilized to identify the factors contributing to possible changes in soil erodibility, critical shear stress, and bulk density. The nonparametric alternative to ANOVA in combination with Dunn's nonparametric multiple comparison test showed soil erodibility was significantly higher (p=0.024) during the winter (November - March) and the spring/fall (April - May, September - October). Regression analyses showed 70 percent of soil erodibility variance was attributed to freeze-thaw cycling alone. Study results also indicated that bulk density is highly influenced by climate changes since gravimetric water content and freeze-thaw cycles combined explain as much as 86 percent of the variance in bulk density measurements. Results of this study show significant amounts of variation in the resistance of streambank soils to fluvial erosion can be attributed to subaerial processes, specifically changes in soil moisture and temperature. These results have potential implications for streambank modeling and restoration projects that assume constant values for soil erodibility. Watershed models and restoration designs should consider the implications of changing soil erodibility during the year in model development and stream restoration designs. / Master of Science

Page generated in 0.2964 seconds