Spelling suggestions: "subject:"then finite element method"" "subject:"them finite element method""
311 |
Analysis of elastic-plastic continuum at large deformation using hybrid descriptions and finite element method /Ayoub, Sherif Fathy January 1986 (has links)
No description available.
|
312 |
Analysis of deformation-induced heating in tensile testing using a finite element method /Kim, Yong Hwan January 1987 (has links)
No description available.
|
313 |
Finite element simulation of fluid-infiltrated thermoviscoelastic porous media /Tseng, Yi-Ping January 1987 (has links)
No description available.
|
314 |
Mechanical characterization and finite element analysis of elastic-plastic, work-hardening soils.Singh, Ram Dhan January 1972 (has links)
No description available.
|
315 |
Finite element analysis of the response of reinforced concrete deep beams subjected to short-term static loads /Gogate, Anand Balkrishna January 1977 (has links)
No description available.
|
316 |
Failure Prediction of Spatial Wood Structures: Geometric and Material Nonlinear Finite Element AnalysisTongtoe, Samruam 14 April 1997 (has links)
The purpose of this study is to investigate spatial wood structures, trace their response on equilibrium paths, identify failure modes, and predict the ultimate load. The finite element models of this study are based on the Crafts Pavilion dome (Triax) in Raleigh, North Carolina, and the Church of the Nazarene dome (Varax) in Corvallis, Oregon. Modeling considerations include 3-d beam finite elements, transverse isotropy, torsional warping, beam-decking connectors, beam-beam connectors, geometric and material nonlinearities, and the discretization of pressure loads.
The primary objective of this study is to test the hypothesis that the beam-decking connectors (B-D connectors) form the weakest link of the dome. The beam-decking connectors are represented by nonlinear springs which model the load slip behavior of nails between the beam and the decking.
The secondary objective of this study is to develop models that are sufficiently simple to use in engineering practice. / Ph. D.
|
317 |
Geometrically-Linear and Nonlinear Analysis of Linear Viscoelastic Composites Using the Finite Element MethodHammerand, Daniel C. 09 September 1999 (has links)
Over the past several decades, the use of composite materials has grown considerably. Typically, fiber-reinforced polymer-matrix composites are modeled as being linear elastic. However, it is well-known that polymers are viscoelastic in nature. Furthermore, the analysis of complex structures requires a numerical approach such as the finite element method. In the present work, a triangular flat shell element for linear elastic composites is extended to model linear viscoelastic composites. Although polymers are usually modeled as being incompressible, here they are modeled as compressible. Furthermore, the macroscopic constitutive properties for fiber-reinforced composites are assumed to be known and are not determined using the matrix and fiber properties along with the fiber volume fraction. Hygrothermo-rheologically simple materials are considered for which a change in the hygrothermal environment results in a horizontal shifting of the relaxation moduli curves on a log time scale, in addition to the usual hygrothermal loads. Both the temperature and moisture are taken to be prescribed. Hence, the heat energy generated by the viscoelastic deformations is not considered.
When the deformations and rotations are small under an applied load history, the usual engineering stress and strain measures can be used and the time history of a viscoelastic deformation process is determined using the original geometry of the structure. If, however, sufficiently large loads are applied, the deflections and rotations will be large leading to changes in the structural stiffness characteristics and possibly the internal loads carried throughout the structure. Hence, in such a case, nonlinear effects must be taken into account and the appropriate stress and strain measures must be used. Although a geometrically-nonlinear finite element code could always be used to compute geometrically-linear deformation processes, it is inefficient to use such a code for small deformations, due to the continual generation of the assembled internal load vector, tangent stiffness matrix, and deformation-dependent external load vectors. Rather, for small deformations, the appropriate deformation-independent stiffness matrices and load vectors to be used for all times can be determined once at the start of the analysis. Of course, the time-dependent viscoelastic effects need to be correctly taken into account in both types of analyses. The present work details both geometrically-linear and nonlinear triangular flat shell formulations for linear viscoelastic composites. The accuracy and capability of the formulations are shown through a range of numerical examples involving beams, rings, plates, and shells. / Ph. D.
|
318 |
Two-Dimensional Finite Element Analysis of Porous Geomaterials at Multikilobar Stress LevelsAkers, Stephen Andrew 14 December 2001 (has links)
A technique was developed for analyzing and developing mechanical properties for porous geomaterials subjected to the high pressures encountered in penetration and blast-type loadings. A finite element (FE) code was developed to verify laboratory test results or to predict unavailable laboratory test data for porous media loaded to multikilobar stress levels. This FE program eliminates a deficiency in the process of analyzing and developing mechanical properties for porous geomaterials by furnishing an advanced analysis tool to the engineer providing properties to material modelers or ground shock calculators. The FE code simulates quasi-static, axisymmetric, laboratory mechanical property tests, i.e., the laboratory tests are analyzed as boundary value problems. The code calculates strains, total and effective stresses, and pore fluid pressures for fully- and partially-saturated porous media. The time dependent flow of the pore fluid is also calculated. An elastic-plastic strain-hardening cap model calculates the time-independent skeletal responses of the porous solids. This enables the code to model nonlinear irreversible stress-strain behavior and shear-induced volume changes. Fluid and solid compressibilities were incorporated into the code, and partially-saturated materials were simulated with a "homogenized" compressible pore fluid. Solutions for several verification problems are given as proof that the program works correctly, and numerical simulations of limestone behavior under drained and undrained boundary conditions are also presented. / Ph. D.
|
319 |
Thermoplastic Sizings: Effects on Processing, Mechanical Performance, and Interphase Formation in Pultruded Carbon Fiber/Vinyl-Ester CompositesBroyles, Norman S. 31 December 1999 (has links)
Sizings, a thin polymer coating applied to the surface of the carbon fiber before impregnation with the matrix, have been shown to affect the mechanical performance of the composite. These sizings affect the processability of the carbon fiber that translates into a composite with less fiber breakage and improved fiber/matrix adhesion. In addition, the interdiffusion of the sizing and the bulk matrix results in the formation of an interphase. This interphase can alter damage initiation and propagation that can ultimately affect composite performance. The overall objective of the work detailed in this thesis is to ascertain the effects that thermoplastic sizing agents have on composite performance and determine the phenomenological events associated with the effects.
All of the thermoplastic sizings had improved processability over the traditional G' sizing. These improvements in processability translated into a composite with less fiber damage and improved surface quality. In addition, all of the thermoplastic sizings outperformed the industrial benchmark sizing G' by at least 25% in static tensile strength, 11% in longitudinal flexure strength, and 30% in short beam shear strength. All moduli were found to be unaffected by the addition of a sizing.
The interphase formed in K-90 PVP sized carbon fiber composites was fundamentally predicted from the constitutive properties of K-90 PVP/Derakane™ interdiffusion and fundamental mass transport equations. The K-90 PVP sizing material interdiffusing with the Derakane™ matrix was found to be dissolution controlled. The dissolution diffusion coefficient had an exponential concentration dependence. Fundamental mass transport models were utilized to predict the interphase profile. The predicted K-90 PVP interphase concentration profile displayed steep gradients at the fiber/matrix interface but essentially no gradients at points distant from the fiber surface. The predicted mechanical property profile was essentially flat for the modulus but did show a steep gradient in the strain-to-failure and shrinkage properties. However, the K-90 PVP interphase compared to the unsized/pure Derakane™ interphase showed improvements in strength and strain-to-failure and a reduction in cure shrinkage without significantly affecting the interphase tensile or shear moduli. / Ph. D.
|
320 |
Reliability-based Design Optimization of a Nonlinear Elastic Plastic Thin-Walled T-Section BeamBa-abbad, Mazen 18 June 2004 (has links)
A two part study is performed to investigate the application of reliability-based design optimization (RBDO) approach to design elastic-plastic stiffener beams with Tsection. The objectives of this study are to evaluate the benefits of reliability-based optimization over deterministic optimization, and to illustrate through a practical design example some of the difficulties that a design engineer may encounter while performing reliability-based optimization. Other objectives are to search for a computationally economic RBDO method and to utilize that method to perform RBDO to design an elastic-plastic T-stiffener under combined loads and with flexural-torsional buckling and local buckling failure modes. First, a nonlinear elastic-plastic T-beam was modeled using a simple 6 degree-of-freedom non-linear beam element. To address the problems of RBDO, such as the high non-linearity and derivative discontinuity of the reliability function, and to illustrate a situation where RBDO fails to produce a significant improvement over the deterministic optimization, a graphical method was developed. The method started by obtaining a deterministic optimum design that has the lowest possible weight for a prescribed safety factor (SF), and based on that design, the method obtains an improved optimum design that has either a higher reliability or a lower weight or cost for the same level of reliability as the deterministic design. Three failure modes were considered for an elastic-plastic beam of T cross-section under combined axial and bending loads. The failure modes are based on the total plastic failure in a beam section, buckling, and maximum allowable deflection. The results of the first part show that it is possible to get improved optimum designs (more reliable or lighter weight) using reliability-based optimization as compared to the design given by deterministic optimization. Also, the results show that the reliability function can be highly non-linear with respect to the design variables and with discontinuous derivatives. Subsequently, a more elaborate 14-degrees-of-freedom beam element was developed and used to model the global failure modes, which include the flexural-torsional and the out-of-plane buckling modes, in addition to local buckling modes. For this subsequent study, four failure modes were specified for an elasticplastic beam of T-cross-section under combined axial, bending, torsional and shear loads. These failure modes were based on the maximum allowable in-plane, out-ofplane and axial rotational deflections, in addition, to the web-tripping local buckling. Finally, the beam was optimized using the sequential optimization with reliabilitybased factors of safety (SORFS) RBDO technique, which was computationally very economic as compared to the widely used nested optimization loop techniques. At the same time, the SOPSF was successful in obtaining superior designs than the deterministic optimum designs (either up to12% weight savings for the same level of safety, or up to six digits improvement in the reliability for the same weight for a design with Safety Factor 2.50). / Ph. D.
|
Page generated in 0.1131 seconds