• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 4
  • 1
  • Tagged with
  • 23
  • 23
  • 23
  • 11
  • 10
  • 7
  • 7
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Disorder in holographic field theories : inhomogeneous geometries, momentum relaxation and SYK models

Loureiro, Bruno January 2018 (has links)
Holographic dualities are now an established tool in the study of universal properties of strongly coupled field theories. Yet, theories without translational symmetry are still poorly understood in this context. In this dissertation, we investigate three new approaches to this challenging problem. The first part of the dissertation concerns a class of phenomenological holographic models in which momentum relaxation can be achieved without breaking translational symmetry in the dual geometry. In particular, we focus on an example in which the dual geometry is similar to anti-de Sitter (AdS) Brans-Dicke theory. We study the thermodynamic and transport properties of the model and show that for strong momentum relaxation and low temperatures the model has insulator-like behaviour. In the second part, we go beyond the effective description and consider holographic theories which explicitly break translational symmetry. From the perspective of gravity, these theories translate to geometries that vary explicitly in the boundary space-like coordinates. We refer to these geometries as 'inhomogeneous' and investigate two approaches to study them. The first is motivated by the question: "what happens to a homogeneous geometry when coupled with a field varying randomly in space?". Starting from an AdS geometry at zero or finite temperature, we show that a spatially varying random Maxwell potential drives the dual field theory to a non-trivial infra-red fixed point characterised by an emerging scale invariance. Thermodynamic and transport properties of this disordered ground state are also discussed. The second is motivated by the complementary question: "how does a random geometry affect a probe field?". In the weak disorder limit, we show that disorder induces an additional power-law decay in the dual correlation functions. For certain choices of geometry profile, this contribution becomes dominant in the infra-red, indicating the breaking of perturbation theory and the possible existence of a phase transition induced by disorder. The third and last part of this dissertation switches from the gravity to the field theoretical side of the duality. We discuss the Sachdev-Ye-Kitaev (SYK) model, a disordered many-body model with distinctive black hole-like properties. We provide analytical and numerical evidence that these holographic properties are robust against a natural one-body deformation for a finite range of parameters. Outside this interval, this system undergoes a chaotic-integrable transition.
2

Wilson loops and their gravity duals in AdS_4/CFT_3

Farquet, Daniel January 2015 (has links)
In the first part of this thesis, we study the duality of Wilson loops and M2-branes in AdS<sub>4</sub>/CFT<sub>3</sub>. We focus on supersymmetric M-theory solutions on AdS<sub>4</sub>xY<sub>7</sub> that have a superconformal dual description on S<sup>3</sup> = ?AdS<sup>4</sup>. We will find that the Hamiltonian function h<sub>M</sub> for the M-theory circle plays an important role in the duality. We show that an M2-brane wrapping the M-theory circle is supersymmetric precisely at the critical points of h<sub>M</sub>, and moreover the value of this function at those points determines the M2-brane actions. Such a configuration determines the holographic dual of a Wilson loop for a Hopf circle in S<sup>3</sup>. We find agreement in large classes of examples between the Wilson loop and its dual M2-brane and also that the image h<sub>M</sub>(Y<sub>7</sub>) determines the range of support of the eigenvalues in the dual large N matrix model, with the critical points of h<sub>M</sub> mapping to points where the derivative of the eigenvalue density is discontinuous. We will then move away from the three-sphere and construct gravity duals to a broad class of N=2 supersymmetric gauge theories defined on a general class of three-manifold geometries. The gravity backgrounds are based on Euclidean self-dual solutions to four-dimensional gauged supergravity. As well as constructing new examples, we prove in general that for solutions defined on the four-ball the gravitational free energy depends only on the supersymmetric Killing vector. Our result agrees with the large N limit of the free energy of the dual gauge theory, computed using localisation. This constitutes an exact check of the gauge/gravity correspondence for a very broad class of gauge theories defined on a general class of background three-manifold geometries. To further verify that our gravitational backgrounds are indeed dual to field theories on their boundaries, we compute Wilson loops and their M2-brane duals in this general setting. We find that the Wilson loop is given by a simple closed formula which depends on the background geometry only through the supersymmetric Killing vector field. The supergravity dual M2-brane precisely reproduces this large N field theory result. This constitutes a further check of AdS<sub>4</sub>/CFT<sub>3</sub> for a very broad class of examples.
3

Duality symmetries in string-inspired supergravity: T-dualities and the gauge/gravity correspondence

Whiting, Catherine Ann 01 May 2015 (has links)
Motivated by the AdS/CFT correspondence, new supersymmetric solutions to Type IIB and Type IIA supergravity are presented. These solutions contain $AdS_5$ or $AdS_4$ factors and are generated using T-duality symmetries of supergravity. The technique used to generate these solutions consists of performing a series of non-Abelian and Abelian T-dualities, sometimes with coordinate shifts in-between, to Freund-Rubin type seed backgrounds. An added bonus of the gauge fixing procedure inherent in non-Abelian T-Duality is the freedom to generate backgrounds with extra free parameters, some examples of which are presented. Aspects of the dual field theories of these new solutions are analyzed using holography techniques. The supersymmetry of these new backgrounds is also discussed. In addition to supergravity backgrounds with AdS, the study of generalized Calabi-Yau manifolds in the context of flux compactifications is briefly reviewed. The particular case of the resolved cone over $Y^{p,q}$ and its admission of generalized SU(3) structure solutions is examined. Contrary to geometries with $AdS$ factors, whose field theory duals are conformal field theories, these types of geometries can be phenomenologically interesting to study, as their gauge theory duals are minimally supersymmetric and confining, thus they could someday help aid our understanding of strongly-coupled QCD (Quantum Chromodynamics).
4

Applications of the holographic principle in string theory

Button, Bradly Kevin 01 July 2014 (has links)
The holographic principle has become an extraordinary tool in theoretical physics, most notably in the form of the Anti-deSitter Conformal Field Theory (AdS/CFT) correspondence, in which classical gravitational degrees of freedom in N-dimensions are related quantum field theory degrees of freedom in N − 1 dimensions in the limit of a large number of fields. Here we present an account of the AdS/CFT correspondence, also known as the gauge/gravity duality, from its origins in the large N 'tHooft expansion, up to Maldacena's proposal that type IIB string theory in the presences of D-branes at low energy is dual to an N = 4, d = 4, U(N) super Yang-Mills on AdS5 × S5 . We begin with an extensive review of (super)string theory including D-branes. We then present the general formulation of the AdS/CFT in the supergravity background of AdS5 × S5 , along with several examples of how it is used in terms of the identification of bulk fields with operators on the bound- ary of a CFT. We move on to discuss two applications of the gauge/gravity duality. The first is the application of the holographic gauge/gravity correspondence to the QCDk-string. The second applies the AdS/CFT formalism to a Kerr black hole solution embedded in 10-dimensional heterotic sting theory. These two applications of the holographic gauge/gravity duality comprise the original work presented here. We follow with summaries and discussions of the background material, the original work, and future investigations.
5

Holographic studies of thermal gauge theories with flavour

Thomson, Rowan January 2007 (has links)
The AdS/CFT correspondence and its extensions to more general gauge/gravity dualities have provided a powerful framework for the study of strongly coupled gauge theories. This thesis explores properties of a large class of thermal strongly coupled gauge theories using the gravity dual. In order to bring the holographic framework closer to Quantum Chromodynamics (QCD), we study theories with matter in the fundamental representation. In particular, we focus on the holographic dual of SU(Nc) supersymmetric Yang-Mills theory coupled to Nf<<Nc flavours of fundamental matter at finite temperature, which is realised as Nf Dq-brane probes in the near horizon (black hole) geometry of Nc black Dp-branes. We explore many aspects of these Dp/Dq brane systems, often focussing on the D3/D7 brane system which is dual to a four dimensional gauge theory. We study the thermodynamics of the Dq-brane probes in the black hole geometry. At low temperature, the branes sit outside the black hole and the meson spectrum is discrete and possesses a mass gap. As the temperature increases, the branes approach a critical solution. Eventually, they fall into the horizon and a phase transition occurs. At large Nc and large 't Hooft coupling, we show that this phase transition is always first order. We calculate the free energy, entropy and energy densities, as well as the speed of sound in these systems. We compute the meson spectrum for brane embeddings outside the horizon and find that tachyonic modes appear where this phase is expected to be unstable from thermodynamic considerations. We study the system at non-zero baryon density nb and find that there is a line of phase transitions for small nb, terminating at a critical point with finite nb. We demonstrate that, to leading order in Nf/Nc, the viscosity to entropy density ratio in these theories saturates the conjectured universal bound. Finally, we compute spectral functions and diffusion constants for fundamental matter in the high temperature phase of the D3/D7 theory.
6

Holographic studies of thermal gauge theories with flavour

Thomson, Rowan January 2007 (has links)
The AdS/CFT correspondence and its extensions to more general gauge/gravity dualities have provided a powerful framework for the study of strongly coupled gauge theories. This thesis explores properties of a large class of thermal strongly coupled gauge theories using the gravity dual. In order to bring the holographic framework closer to Quantum Chromodynamics (QCD), we study theories with matter in the fundamental representation. In particular, we focus on the holographic dual of SU(Nc) supersymmetric Yang-Mills theory coupled to Nf<<Nc flavours of fundamental matter at finite temperature, which is realised as Nf Dq-brane probes in the near horizon (black hole) geometry of Nc black Dp-branes. We explore many aspects of these Dp/Dq brane systems, often focussing on the D3/D7 brane system which is dual to a four dimensional gauge theory. We study the thermodynamics of the Dq-brane probes in the black hole geometry. At low temperature, the branes sit outside the black hole and the meson spectrum is discrete and possesses a mass gap. As the temperature increases, the branes approach a critical solution. Eventually, they fall into the horizon and a phase transition occurs. At large Nc and large 't Hooft coupling, we show that this phase transition is always first order. We calculate the free energy, entropy and energy densities, as well as the speed of sound in these systems. We compute the meson spectrum for brane embeddings outside the horizon and find that tachyonic modes appear where this phase is expected to be unstable from thermodynamic considerations. We study the system at non-zero baryon density nb and find that there is a line of phase transitions for small nb, terminating at a critical point with finite nb. We demonstrate that, to leading order in Nf/Nc, the viscosity to entropy density ratio in these theories saturates the conjectured universal bound. Finally, we compute spectral functions and diffusion constants for fundamental matter in the high temperature phase of the D3/D7 theory.
7

Black Holes And Their Entropy

Mei, Jianwei 2010 August 1900 (has links)
This dissertation covers two di erent but related topics: the construction of new black hole solutions and the study of the microscopic origin of black hole entropy. In the solution part, two di erent sets of new solutions are found. The rst concerns a Plebanski-Demianski type solution in the ve-dimensional pure Einstein gravity, and the second concerns a three-charge (two of which equal) two-rotation solution to the ve-dimensional maximal supergravity. Obtaining new and interesting black hole solutions is an important and challenging task in studying general relativity and its extensions. During the past decade, the solutions become even more important because they might nd applications in the study of the gauge/gravity duality, which is currently in the central stage of the quantum gravity research. The Kerr/CFT correspondence is a recently propose example of the gauge/gravity duality. In the entropy part, we explicitly show that the Kerr/CFT correspondence can be applied to all known extremal stationary and axisymmetric black holes. We improve over previous works in showing that this can be done in a general fashion, rather than testing di erent solutions case by case. This e ort makes it obvious that the common structure of the near horizon metric for all known extremal stationary and axisymmetric black holes is playing a key role in the success of the Kerr/CFT correspondence. The discussion is made possible by the identi cation of two general ans atze that cover all such known solutions.
8

Exotic States in Quarkonium Physics: Effective Theories of Heavy Mesonic Molecules and an AdS/QCD Model of Hybrid Quarkonium

Powell, Joshua January 2013 (has links)
<p>Quantum chromodynamics (QCD), the theory of quarks and gluons, is known to be</p><p>the correct description of strong nuclear interactions. At high energy and momenta,</p><p>one can use QCD directly to compute quantities of physical interest related to the</p><p>strong force. At low energies and momenta, one should use a different description in</p><p>terms of the degrees of freedom relevant at that scale. Two approaches to achieve</p><p>this end are effective field theories and gauge/gravity dualities. The former involves</p><p>a field theory more or less like QCD itself, but with states which are composites</p><p>of quarks and gluons. Then a perturbative expansion is made not in terms of the</p><p>gauge coupling but instead in terms of the momentum of the fields. This approach</p><p>dates back to the 1970s and is on firm theoretical footing. Gauge/gravity dualities</p><p>are a newer and less understood technique, which relates the physics of the strong</p><p>interactions to a different but likely equivalent theory in a higher dimensional space-</p><p>time, where the quantity of interest can be computed more readily. We employ</p><p>both effective field theories and gauge/gravity dualities to study the physics of ex-</p><p>otic quarkonium states, that is bound states containing a heavy quark-antiquark pair</p><p>which nevertheless cannot be be understood working only with the standard quark</p><p>model of hadrons. Candidates for such states, long speculated to exist, have recently</p><p>been observed at particle colliders, so that the theory of exotic quarkonium is now</p><p>of great experimental importance.</p> / Dissertation
9

GAUGE-GRAVITY DUALITY AND ITS APPLICATIONS TO COSMOLOGY AND FLUID DYNAMICS

Oh, Jae-Hyuk 01 January 2011 (has links)
This thesis is devoted to the study of two important applications of gauge-gravity duality: the cosmological singularity problem and conformal fluid dynamics. Gauge-gravity duality is a concrete dual relationship between a gauge theory (such as electromagnetism, the theories of weak and strong interactions), and a theory of strings which contains gravity. The most concrete application of this duality is the AdS/CFT correspondence, where the theory containing gravity lives in the bulk of an asymptotically anti-de-Sitter space-time, while the dual gauge theory is a deformation of a conformal field theory which lives on the boundary of anti-de-Sitter space-time(AdS). Our first application of gauge-gravity duality is to the cosmological singularity problem in string gravity. A cosmological singularity is defined as a spacelike region of space-time which is highly curved so that Einstein’s gravity theory can be no longer applied. In our setup the bulk space-time has low curvature in the far past and the physics is well described by supergravity (which is an extension of standard Einstein gravity). The cosmological singularity is driven by a time dependent string coupling in the bulk theory. The rate of change of the coupling is slow, but the net change of the coupling can be large. The dual description of this is a time dependent coupling of the boundary gauge theory. The coupling has a profile which is a constant in the far past and future and attains a small but finite value at intermediate times. We construct the supergravity solution, with the initial condition that the bulk space-time is pure AdS in the far past and show that the solution remains smooth in a derivative expansion without formation of black holes. However when the intermediate value of the string coupling becomes weak enough, space-time becomes highly curved and the supergravity approximation breaks down, mimicking a spacelike singularity. The resulting dynamics is analyzed in the dual gauge theory with a time dependent coupling constant which varies slowly. We develop an appropriate adiabatic expansion in the gauge theory in terms of coherent states and show that the time evolution continues to be smooth. We cannot, however, arrive at a definitive conclusion about the fate of the system at very late times when the coupling has again risen and supergravity again applies. One possibility is that the energy which has been supplied to the universe is simply extracted out and the space-time goes back to its initial state. This could provide a model for a bouncing cosmology. A second possibility is that dissipation leads to a thermal state at late time. If this possibility holds, we show that such a thermal state will be described either by a gas of strings or by a small black hole, but not by a big black hole. This means that in either case, the future space-time is close to AdS. We then apply gauge-gravity duality to conformal fluid dynamics. The long wavelength behavior of any strongly coupled system with a finite mean free path is described by an appropriate fluid dynamics. The bulk dual of a fluid flow in the boundary theory is a black hole with a slowly varying horizon. In this work we consider certain fluid flows which become supersonic in some regions. It is well known that such flows present acoustic analogs of ergoregions and horizons, where acoustic waves cannot propagate in certain directions. Such acoustic horizons are expected to exhibit thermal radiation of acoustic waves with temperature essentially given by the gradient of the velocity at the acoustic horizon. We find acoustic analogs of black holes in charged conformal fluids and use gauge-gravity duality to construct dual gravity solutions. A certain class of gravitational quasinormal wave modes around these gravitational backgrounds perceives a horizon. Upon quantization, this implies that these gravitational modes should have a thermal spectrum. The final issue that we study is fluid-gravity duality at zero temperature. The usual way of constructing gravity duals of fluid flows is by means of a small derivative expansion, in which the derivatives are much smaller than the temperature of the background black hole. Recently, it has been reported that for charged fluids, this procedure breaks down in the zero temperature limit. More precisely, corrections to the small derivative expansion in the dual gravity of charged fluid at zero temperature have singularities at the black hole horizon. In this case, fluid-gravity duality is not understood precisely. We explore this problem for a zero temperature charged fluid driven by a low frequency, small amplitude and spatially homogeneous external force. In the gravity dual, this force corresponds to a time dependent boundary value of the dilaton field. We calculate the bulk solution for the dilaton and the leading backreaction using a modified low frequency expansion. The resulting solutions are regular everywhere, establishing fluid-gravity duality to this order.
10

Symmetry breaking and Goldstone bosons in holographic strongly coupled field theories: Relativistic and non-relativistic examples

Marzolla, Andrea 29 September 2017 (has links)
In this thesis various holographic models are treated, which describe theories of fields where an internal symmetry is broken, either in relativistic contexts, or in case of violation of the Lorentz invariance.The first chapter opens with the revision of the notion of symmetry breaking in pure relativistic field theory. The case of spontaneous breaking and the Goldstone theorem are discussed, as well as the case of explicit breaking, where precise Ward identities between conserved current correlators and scalar operators loaded under such current are derived in a completely general way.We then consider two examples of non-relativistic field theories, which will be reproduced by holographic models: a model in which the invariance of boosts is broken by the presence of a chemical potential, and a model of Lifshitz's invariant theory. We show the non-relativistic realization of Ward's identities for the symmetry breaking.In the second chapter we briefly introduce the correspondence gravitation / gauge theory and we revise the central tool of this thesis, the holographic renormalization.In the third chapter, we show how to generate field theories with symmetry breaking by coupling a scalar field to a gauge field, and holographically deriving the Ward identities predicted by the field theory arguments, first in the Relativistic case. We also obtain an analytic expression for the scalar two-point function, where we know how to find the massless boson of Goldstone and the mass of linear mass in the explicit breaking parameter Of the Goldstone pseudo-boson, respectively in the purely spontaneous case and in the case of an explicit small break.We also consider the two-dimensional case on the edge, where we find that Coleman's theorem is eluded in the wide limit of $ N $, and Ward's identities are not affected.For non-relativistic cases, we first consider a non-abelian model in which the Lorentz invariance is broken: this situation makes it possible to observe so-called ~ B bosons which exhibit a quadratic dispersion relation and do not respect Not the law of a single Goldstone mode for each broken generator.Finally, we study in detail the holographic renormalization and the two-point functions for a conserved current and various scalar operators in a space-time of Lifshitz. We also find the Ward identities of symmetry breaking in their non-relativistic realization. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.1018 seconds