• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 453
  • 82
  • 77
  • 47
  • 41
  • 40
  • 38
  • 20
  • 13
  • 7
  • 7
  • 5
  • 5
  • 4
  • 3
  • Tagged with
  • 984
  • 597
  • 329
  • 263
  • 138
  • 100
  • 98
  • 71
  • 69
  • 68
  • 68
  • 66
  • 62
  • 61
  • 54
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

A Framework for Discovery and Diagnosis of Behavioral Transitions in Event-streams

Akhlaghi, Arash 18 December 2013 (has links)
Date stream mining techniques can be used in tracking user behaviors as they attempt to achieve their goals. Quality metrics over stream-mined models identify potential changes in user goal attainment. When the quality of some data mined models varies significantly from nearby models—as defined by quality metrics—then the user’s behavior is automatically flagged as a potentially significant behavioral change. Decision tree, sequence pattern and Hidden Markov modeling being used in this study. These three types of modeling can expose different aspect of user’s behavior. In case of decision tree modeling, the specific changes in user behavior can automatically characterized by differencing the data-mined decision-tree models. The sequence pattern modeling can shed light on how the user changes his sequence of actions and Hidden Markov modeling can identifies the learning transition points. This research describes how model-quality monitoring and these three types of modeling as a generic framework can aid recognition and diagnoses of behavioral changes in a case study of cognitive rehabilitation via emailing. The date stream mining techniques mentioned are used to monitor patient goals as part of a clinical plan to aid cognitive rehabilitation. In this context, real time data mining aids clinicians in tracking user behaviors as they attempt to achieve their goals. This generic framework can be widely applicable to other real-time data-intensive analysis problems. In order to illustrate this fact, the similar Hidden Markov modeling is being used for analyzing the transactional behavior of a telecommunication company for fraud detection. Fraud similarly can be considered as a potentially significant transaction behavioral change.
302

On Improved Generalization of 5-State Hidden Markov Model-based Internet Traffic Classifiers

Bartnik, Grant 06 June 2013 (has links)
The multitude of services delivered over the Internet would have been difficult to fathom 40 years ago when much of the initial design was being undertaken. As a consequence, the resulting architecture did not make provisions for differentiating between, and managing the potentially conflicting requirements of different types of services such as real-time voice communication and peer-to-peer file sharing. This shortcoming has resulted in a situation whereby services with conflicting requirements often interfere with each other and ultimately decrease the effectiveness of the Internet as an enabler of new and transformative services. The ability to passively identify different types of Internet traffic then would address this shortcoming and enable effective management of conflicting types of services, in addition to facilitating a better understanding of how the Internet is used in general. Recent attempts at developing such techniques have shown promising results in simulation environments but perform considerably worse when deployed into real-world scenarios. One possible reason for this descrepancy can be attributed to the implicit assumption shared by recent approaches regarding the degree of similarity between the many networks which comprise the Internet. This thesis quantifies the degradation in performance which can be expected when such an assumption is violated as well as demonstrating alternative classification techniques which are less sensitive to such violations.
303

Predicting opponent locations in first-person shooter video games

Hladky, Stephen Michael Unknown Date
No description available.
304

An examination of predator habitat usage: movement analysis in a marine fishery and freshwater fish

Charles, Colin 03 July 2013 (has links)
This thesis investigates the influence of predator movements upon habitat selection and foraging success. It deals with two very distinct datasets one from a marine system, the snow crab (Chionoecetes opilio) fishery, and the second from a freshwater system, an experimental rainbow trout (Oncorhynchus mykiss) aquaculture operation. Deriving a standardized measure of catch from logbook data is important because catch per unit effort (CPUE) is used in fisheries analysis to estimate abundance, but it some cases CPUE is a biased estimate. For the snow crab fishery, a relative abundance measure was developed using fisher movements and logbook data that reflected commercially available biomass and produced an improved relative abundance estimate. Results from the aquaculture dataset indicate that escaped farmed rainbow trout continue to use the cage site when waste feed is available, while native lake trout do not interact with the cage. Once access to waste feed is removed, both lake trout and escaped rainbow trout do not use the cage site. This thesis uses methods to identify patterns and behaviours using movement tracks to increase our understanding of predator habitat usage.
305

Méthodes de Monte Carlo EM et approximations particulaires : Application à la calibration d'un modèle de volatilité stochastique.

09 December 2013 (has links) (PDF)
Ce travail de thèse poursuit une perspective double dans l'usage conjoint des méthodes de Monte Carlo séquentielles (MMS) et de l'algorithme Espérance-Maximisation (EM) dans le cadre des modèles de Markov cachés présentant une structure de dépendance markovienne d'ordre supérieur à 1 au niveau de la composante inobservée. Tout d'abord, nous commençons par un exposé succinct de l'assise théorique des deux concepts statistiques à travers les chapitres 1 et 2 qui leurs sont consacrés. Dans un second temps, nous nous intéressons à la mise en pratique simultanée des deux concepts au chapitre 3 et ce dans le cadre usuel où la structure de dépendance est d'ordre 1. L'apport des méthodes MMS dans ce travail réside dans leur capacité à approximer efficacement des fonctionnelles conditionnelles bornées, notamment des quantités de filtrage et de lissage dans un cadre non linéaire et non gaussien. Quant à l'algorithme EM, il est motivé par la présence à la fois de variables observables et inobservables (ou partiellement observées) dans les modèles de Markov Cachés et singulièrement les mdèles de volatilité stochastique étudié. Après avoir présenté aussi bien l'algorithme EM que les méthodes MCs ainsi que quelques unes de leurs propriétés dans les chapitres 1 et 2 respectivement, nous illustrons ces deux outils statistiques au travers de la calibration d'un modèle de volatilité stochastique. Cette application est effectuée pour des taux change ainsi que pour quelques indices boursiers au chapitre 3. Nous concluons ce chapitre sur un léger écart du modèle de volatilité stochastique canonique utilisé ainsi que des simulations de Monte Carlo portant sur le modèle résultant. Enfin, nous nous efforçons dans les chapitres 4 et 5 à fournir les assises théoriques et pratiques de l'extension des méthodes Monte Carlo séquentielles notamment le filtrage et le lissage particulaire lorsque la structure markovienne est plus prononcée. En guise d'illustration, nous donnons l'exemple d'un modèle de volatilité stochastique dégénéré dont une approximation présente une telle propriété de dépendance.
306

Detection, Localization, and Recognition of Faults in Transmission Networks Using Transient Currents

Perera, Nuwan 18 September 2012 (has links)
The fast clearing of faults is essential for preventing equipment damage and preserving the stability of the power transmission systems with smaller operating margins. This thesis examined the application of fault generated transients for fast detection and isolation of faults in a transmission system. The basis of the transient based protection scheme developed and implemented in this thesis is the fault current directions identified by a set of relays located at different nodes of the system. The direction of the fault currents relative to a relay location is determined by comparing the signs of the wavelet coefficients of the currents measured in all branches connected to the node. The faulted segment can be identified by combining the fault directions identified at different locations in the system. In order to facilitate this, each relay is linked with the relays located at the adjacent nodes through a telecommunication network. In order to prevent possible malfunctioning of relays due to transients originating from non-fault related events, a transient recognition system to supervise the relays is proposed. The applicability of different classification methods to develop a reliable transient recognition system was examined. A Hidden Markov Model classifier that utilizes the energies associated with the wavelet coefficients of the measured currents as input features was selected as the most suitable solution. Performance of the protection scheme was evaluated using a high voltage transmission system simulated in PSCAD/EMTDC simulation software. The custom models required to simulate the complete protection scheme were implemented in PSCAD/EMTDC. The effects of various factors such as fault impedance, signal noise, fault inception angle and current transformer saturation were investigated. The performance of the protection scheme was also tested with the field recorded signals. Hardware prototypes of the fault direction identification scheme and the transient classification system were implemented and tested under different practical scenarios using input signals generated with a real-time waveform playback instrument. The test results presented in this thesis successfully demonstrate the potential of using transient signals embedded in currents for detection, localization and recognition of faults in transmission networks in a fast and reliable manner.
307

Automatic Driver Fatigue Monitoring Using Hidden Markov Models and Bayesian Networks

Rashwan, Abdullah 11 December 2013 (has links)
The automotive industry is growing bigger each year. The central concern for any automotive company is driver and passenger safety. Many automotive companies have developed driver assistance systems, to help the driver and to ensure driver safety. These systems include adaptive cruise control, lane departure warning, lane change assistance, collision avoidance, night vision, automatic parking, traffic sign recognition, and driver fatigue detection. In this thesis, we aim to build a driver fatigue detection system that advances the research in this area. Using vision in detecting driver fatigue is commonly the key part for driver fatigue detection systems. We have decided to investigate different direction. We examine the driver's voice, heart rate, and driving performance to assess fatigue level. The system consists of three main modules: the audio module, the heart rate and other signals module, and the Bayesian network module. The audio module analyzes an audio recording of a driver and tries to estimate the level of fatigue for the driver. A Voice Activity Detection (VAD) module is used to extract driver speech from the audio recording. Mel-Frequency Cepstrum Coefficients, (MFCC) features are extracted from the speech signal, and then Support Vector Machines (SVM) and Hidden Markov Models (HMM) classifiers are used to detect driver fatigue. Both classifiers are tuned for best performance, and the performance of both classifiers is reported and compared. The heart rate and other signals module uses heart rate, steering wheel position, and the positions of the accelerator, brake, and clutch pedals to detect the level of fatigue. These signals' sample rates are then adjusted to match, allowing simple features to be extracted from the signals, and SVM and HMM classifiers are used to detect fatigue level. The performance of both classifiers is reported and compared. Bayesian networks' abilities to capture dependencies and uncertainty make them a sound choice to perform the data fusion. Prior information (Day/Night driving and previous decision) is also incorporated into the network to improve the final decision. The accuracies of the audio and heart rate and other signals modules are used to calculate certain CPTs for the Bayesian network, while the rest of the CPTs are calculated subjectively. The inference queries are calculated using the variable elimination algorithm. For those time steps where the audio module decision is absent, a window is defined and the last decision within this window is used as a current decision. The performance of the system is assessed based on the average accuracy per second. A dataset was built to train and test the system. The experimental results show that the system is very promising. The performance of the system was assessed based on the average accuracy per second; the total accuracy of the system is 90.5%. The system design can be easily improved by easily integrating more modules into the Bayesian network.
308

An examination of predator habitat usage: movement analysis in a marine fishery and freshwater fish

Charles, Colin 03 July 2013 (has links)
This thesis investigates the influence of predator movements upon habitat selection and foraging success. It deals with two very distinct datasets one from a marine system, the snow crab (Chionoecetes opilio) fishery, and the second from a freshwater system, an experimental rainbow trout (Oncorhynchus mykiss) aquaculture operation. Deriving a standardized measure of catch from logbook data is important because catch per unit effort (CPUE) is used in fisheries analysis to estimate abundance, but it some cases CPUE is a biased estimate. For the snow crab fishery, a relative abundance measure was developed using fisher movements and logbook data that reflected commercially available biomass and produced an improved relative abundance estimate. Results from the aquaculture dataset indicate that escaped farmed rainbow trout continue to use the cage site when waste feed is available, while native lake trout do not interact with the cage. Once access to waste feed is removed, both lake trout and escaped rainbow trout do not use the cage site. This thesis uses methods to identify patterns and behaviours using movement tracks to increase our understanding of predator habitat usage.
309

ROLE OF THE PLANT-PATHOGEN CROSS TALKING IN FUSARIUM MYCOTOX IN PRODUCTION AND MASKING IN MAIZE

GREGORI, ROSSELLA 19 February 2014 (has links)
In this work we investigated the in vivo and in vitro ecological conditions that can favour the fumonisin production, both free and hidden forms, in the maize-Fusarium verticillioides pathosystem. Samples of different maize hybrids have been collected from dough to the harvest maturity to follow the trend of fungal incidence and both fumonisin forms contamination, but also the changes in chemical composition. Differences in the level of contamination have been found among hybrids during the growing season. Furthermore, the production of fumonisins has been found correlated to the total lipids content, another parameter that changed during the growing season. This finding underlined the existence of a relationship between toxin contamination and fatty acids composition of the hybrids. Recently the existence of a cross talk between plant and pathogen has been demonstrated, based on some oxidized signal molecules (oxylipins) produced from fatty acid precursors. This result was also confirmed by the molecular analysis on the in vitro pathosystem that showed differences in the activation of the genes involved in plant and fungal oxylipins production during the incubation time. Also post-harvest contamination of maize was investigated in this study, with particular attention to the effects of the drying treatment, a common post-harvest practice aimed at decreasing the water availability, and to the storage capacity of a new low cost storage system, silo bag. The drying treatment was showed to affect fumonisins content, in particular an increased fumonisins contamination was detected after heat treatments. This increment seemed to be produced by chemical changes of matrix components, caused by high temperature, that produced the release of hidden fumonisin in free form. Silo bags were shown to be an effective system to store cereals because no significant change occurred in fungi or toxins contamination during a 9-month storage. Therefore, being more flexible and less expensive than traditional store houses, they should be very useful for farmers.
310

Detection, Localization, and Recognition of Faults in Transmission Networks Using Transient Currents

Perera, Nuwan 18 September 2012 (has links)
The fast clearing of faults is essential for preventing equipment damage and preserving the stability of the power transmission systems with smaller operating margins. This thesis examined the application of fault generated transients for fast detection and isolation of faults in a transmission system. The basis of the transient based protection scheme developed and implemented in this thesis is the fault current directions identified by a set of relays located at different nodes of the system. The direction of the fault currents relative to a relay location is determined by comparing the signs of the wavelet coefficients of the currents measured in all branches connected to the node. The faulted segment can be identified by combining the fault directions identified at different locations in the system. In order to facilitate this, each relay is linked with the relays located at the adjacent nodes through a telecommunication network. In order to prevent possible malfunctioning of relays due to transients originating from non-fault related events, a transient recognition system to supervise the relays is proposed. The applicability of different classification methods to develop a reliable transient recognition system was examined. A Hidden Markov Model classifier that utilizes the energies associated with the wavelet coefficients of the measured currents as input features was selected as the most suitable solution. Performance of the protection scheme was evaluated using a high voltage transmission system simulated in PSCAD/EMTDC simulation software. The custom models required to simulate the complete protection scheme were implemented in PSCAD/EMTDC. The effects of various factors such as fault impedance, signal noise, fault inception angle and current transformer saturation were investigated. The performance of the protection scheme was also tested with the field recorded signals. Hardware prototypes of the fault direction identification scheme and the transient classification system were implemented and tested under different practical scenarios using input signals generated with a real-time waveform playback instrument. The test results presented in this thesis successfully demonstrate the potential of using transient signals embedded in currents for detection, localization and recognition of faults in transmission networks in a fast and reliable manner.

Page generated in 0.2171 seconds