• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • Tagged with
  • 10
  • 10
  • 10
  • 10
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Predicting opponent locations in first-person shooter video games

Hladky, Stephen Michael 11 1900 (has links)
Commercial video game developers constantly strive to create intelligent humanoid characters that are controlled by computers. To ensure computer opponents are challenging to human players, these characters are often allowed to cheat. Although they appear skillful at playing video games, cheating characters may not behave in a human-like manner and can contribute to a lack of player enjoyment if caught. This work investigates the problem of predicting opponent positions in the video game Counter-Strike: Source without cheating. Prediction models are machine-learned from records of past matches and are informed only by game information available to a human player. Results show that the best models estimate opponent positions with similar or better accuracy than human experts. Moreover, the mistakes these models make are closer to human predictions than actual opponent locations perturbed by a corresponding amount of Gaussian noise.
2

Predicting opponent locations in first-person shooter video games

Hladky, Stephen Michael Unknown Date
No description available.
3

Autonomous Crop Segmentation, Characterisation and Localisation / Autonom Segmentering, Karakterisering och Lokalisering i Mandelplantager

Jagbrant, Gustav January 2013 (has links)
Orchards demand large areas of land, thus they are often situated far from major population centres. As a result it is often difficult to obtain the necessary personnel, limiting both growth and productivity. However, if autonomous robots could be integrated into the operation of the orchard, the manpower demand could be reduced. A key problem for any autonomous robot is localisation; how does the robot know where it is? In agriculture robots, the most common approach is to use GPS positioning. However, in an orchard environment, the dense and tall vegetation restricts the usage to large robots that reach above the surroundings. In order to enable the use of smaller robots, it is instead necessary to use a GPS independent system. However, due to the similarity of the environment and the lack of strong recognisable features, it appears unlikely that typical non-GPS solutions will prove successful. Therefore we present a GPS independent localisation system, specifically aimed for orchards, that utilises the inherent structure of the surroundings. Furthermore, we examine and individually evaluate three related sub-problems. The proposed system utilises a 3D point cloud created from a 2D LIDAR and the robot’s movement. First, we show how the data can be segmented into individual trees using a Hidden Semi-Markov Model. Second, we introduce a set of descriptors for describing the geometric characteristics of the individual trees. Third, we present a robust localisation method based on Hidden Markov Models. Finally, we propose a method for detecting segmentation errors when associating new tree measurements with previously measured trees. Evaluation shows that the proposed segmentation method is accurate and yields very few segmentation errors. Furthermore, the introduced descriptors are determined to be consistent and informative enough to allow localisation. Third, we show that the presented localisation method is robust both to noise and segmentation errors. Finally it is shown that a significant majority of all segmentation errors can be detected without falsely labeling correct segmentations as incorrect. / Eftersom fruktodlingar kräver stora markområden är de ofta belägna långt från större befolkningscentra. Detta gör det svårt att finna tillräckligt med arbetskraft och begränsar expansionsmöjligheterna. Genom att integrera autonoma robotar i drivandet av odlingarna skulle arbetet kunna effektiviseras och behovet av arbetskraft minska. Ett nyckelproblem för alla autonoma robotar är lokalisering; hur vet roboten var den är? I jordbruksrobotar är standardlösningen att använda GPS-positionering. Detta är dock problematiskt i fruktodlingar, då den höga och täta vegetationen begränsar användandet till större robotar som når ovanför omgivningen. För att möjliggöra användandet av mindre robotar är det istället nödvändigt att använda ett GPS-oberoende lokaliseringssystem. Detta problematiseras dock av den likartade omgivningen och bristen på distinkta riktpunkter, varför det framstår som osannolikt att existerande standardlösningar kommer fungera i denna omgivning. Därför presenterar vi ett GPS-oberoende lokaliseringssystem, speciellt riktat mot fruktodlingar, som utnyttjar den naturliga strukturen hos omgivningen.Därutöver undersöker vi och utvärderar tre relaterade delproblem. Det föreslagna systemet använder ett 3D-punktmoln skapat av en 2D-LIDAR och robotens rörelse. Först visas hur en dold semi-markovmodell kan användas för att segmentera datasetet i enskilda träd. Därefter introducerar vi ett antal deskriptorer för att beskriva trädens geometriska form. Vi visar därefter hur detta kan kombineras med en dold markovmodell för att skapa ett robust lokaliseringssystem.Slutligen föreslår vi en metod för att detektera segmenteringsfel när nya mätningar av träd associeras med tidigare uppmätta träd. De föreslagna metoderna utvärderas individuellt och visar på goda resultat. Den föreslagna segmenteringsmetoden visas vara noggrann och ge upphov till få segmenteringsfel. Därutöver visas att de introducerade deskriptorerna är tillräckligt konsistenta och informativa för att möjliggöra lokalisering. Ytterligare visas att den presenterade lokaliseringsmetoden är robust både mot brus och segmenteringsfel. Slutligen visas att en signifikant majoritet av alla segmenteringsfel kan detekteras utan att felaktigt beteckna korrekta segmenteringar som inkorrekta.
4

Generative, Discriminative, and Hybrid Approaches to Audio-to-Score Automatic Singing Transcription / 自動歌声採譜のための生成的・識別的・混成アプローチ

Nishikimi, Ryo 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(情報学) / 甲第23311号 / 情博第747号 / 新制||情||128(附属図書館) / 京都大学大学院情報学研究科知能情報学専攻 / (主査)准教授 吉井 和佳, 教授 河原 達也, 教授 西野 恒, 教授 鹿島 久嗣 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
5

Analyse conjointe de traces oculométriques et d'EEG à l'aide de modèles de Markov cachés couplés / Joint analysis of eye movements and EEGs using coupled hidden Markov

Olivier, Brice 26 June 2019 (has links)
Cette thèse consiste à analyser conjointement des signaux de mouvement des yeux et d’électroencéphalogrammes (EEG) multicanaux acquis simultanément avec des participants effectuant une tâche de lecture de recueil d'informations afin de prendre une décision binaire - le texte est-il lié à un sujet ou non? La recherche d'informations textuelles n'est pas un processus homogène dans le temps - ni d'un point de vue cognitif, ni en termes de mouvement des yeux. Au contraire, ce processus implique plusieurs étapes ou phases, telles que la lecture normale, le balayage, la lecture attentive - en termes d'oculométrie - et la création et le rejet d'hypothèses, la confirmation et la décision - en termes cognitifs.Dans une première contribution, nous discutons d'une méthode d'analyse basée sur des chaînes semi-markoviennes cachées sur les signaux de mouvement des yeux afin de mettre en évidence quatre phases interprétables en termes de stratégie d'acquisition d'informations: lecture normale, lecture rapide, lecture attentive et prise de décision.Dans une deuxième contribution, nous lions ces phases aux changements caractéristiques des signaux EEG et des informations textuelles. En utilisant une représentation en ondelettes des EEG, cette analyse révèle des changements de variance et de corrélation des coefficients inter-canaux, en fonction des phases et de la largeur de bande. En utilisant des méthodes de plongement des mots, nous relions l’évolution de la similarité sémantique au sujet tout au long du texte avec les changements de stratégie.Dans une troisième contribution, nous présentons un nouveau modèle dans lequel les EEG sont directement intégrés en tant que variables de sortie afin de réduire l’incertitude des états. Cette nouvelle approche prend également en compte les aspects asynchrones et hétérogènes des données. / This PhD thesis consists in jointly analyzing eye-tracking signals and multi-channel electroencephalograms (EEGs) acquired concomitantly on participants doing an information collection reading task in order to take a binary decision - is the text related to some topic or not ? Textual information search is not a homogeneous process in time - neither on a cognitive point of view, nor in terms of eye-movement. On the contrary, this process involves several steps or phases, such as normal reading, scanning, careful reading - in terms of oculometry - and creation and rejection of hypotheses, confirmation and decision - in cognitive terms.In a first contribution, we discuss an analysis method based on hidden semi-Markov chains on the eye-tracking signals in order to highlight four interpretable phases in terms of information acquisition strategy: normal reading, fast reading, careful reading, and decision making.In a second contribution, we link these phases with characteristic changes of both EEGs signals and textual information. By using a wavelet representation of EEGs, this analysis reveals variance and correlation changes of the inter-channels coefficients, according to the phases and the bandwidth. And by using word embedding methods, we link the evolution of semantic similarity to the topic throughout the text with strategy changes.In a third contribution, we present a new model where EEGs are directly integrated as output variables in order to reduce the state uncertainty. This novel approach also takes into consideration the asynchronous and heterogeneous aspects of the data.
6

On some special-purpose hidden Markov models / Einige Erweiterungen von Hidden Markov Modellen für spezielle Zwecke

Langrock, Roland 28 April 2011 (has links)
No description available.
7

System Availability Maximization and Residual Life Prediction under Partial Observations

Jiang, Rui 10 January 2012 (has links)
Many real-world systems experience deterioration with usage and age, which often leads to low product quality, high production cost, and low system availability. Most previous maintenance and reliability models in the literature do not incorporate condition monitoring information for decision making, which often results in poor failure prediction for partially observable deteriorating systems. For that reason, the development of fault prediction and control scheme using condition-based maintenance techniques has received considerable attention in recent years. This research presents a new framework for predicting failures of a partially observable deteriorating system using Bayesian control techniques. A time series model is fitted to a vector observation process representing partial information about the system state. Residuals are then calculated using the fitted model, which are indicative of system deterioration. The deterioration process is modeled as a 3-state continuous-time homogeneous Markov process. States 0 and 1 are not observable, representing healthy (good) and unhealthy (warning) system operational conditions, respectively. Only the failure state 2 is assumed to be observable. Preventive maintenance can be carried out at any sampling epoch, and corrective maintenance is carried out upon system failure. The form of the optimal control policy that maximizes the long-run expected average availability per unit time has been investigated. It has been proved that a control limit policy is optimal for decision making. The model parameters have been estimated using the Expectation Maximization (EM) algorithm. The optimal Bayesian fault prediction and control scheme, considering long-run average availability maximization along with a practical statistical constraint, has been proposed and compared with the age-based replacement policy. The optimal control limit and sampling interval are calculated in the semi-Markov decision process (SMDP) framework. Another Bayesian fault prediction and control scheme has been developed based on the average run length (ARL) criterion. Comparisons with traditional control charts are provided. Formulae for the mean residual life and the distribution function of system residual life have been derived in explicit forms as functions of a posterior probability statistic. The advantage of the Bayesian model over the well-known 2-parameter Weibull model in system residual life prediction is shown. The methodologies are illustrated using simulated data, real data obtained from the spectrometric analysis of oil samples collected from transmission units of heavy hauler trucks in the mining industry, and vibration data from a planetary gearbox machinery application.
8

System Availability Maximization and Residual Life Prediction under Partial Observations

Jiang, Rui 10 January 2012 (has links)
Many real-world systems experience deterioration with usage and age, which often leads to low product quality, high production cost, and low system availability. Most previous maintenance and reliability models in the literature do not incorporate condition monitoring information for decision making, which often results in poor failure prediction for partially observable deteriorating systems. For that reason, the development of fault prediction and control scheme using condition-based maintenance techniques has received considerable attention in recent years. This research presents a new framework for predicting failures of a partially observable deteriorating system using Bayesian control techniques. A time series model is fitted to a vector observation process representing partial information about the system state. Residuals are then calculated using the fitted model, which are indicative of system deterioration. The deterioration process is modeled as a 3-state continuous-time homogeneous Markov process. States 0 and 1 are not observable, representing healthy (good) and unhealthy (warning) system operational conditions, respectively. Only the failure state 2 is assumed to be observable. Preventive maintenance can be carried out at any sampling epoch, and corrective maintenance is carried out upon system failure. The form of the optimal control policy that maximizes the long-run expected average availability per unit time has been investigated. It has been proved that a control limit policy is optimal for decision making. The model parameters have been estimated using the Expectation Maximization (EM) algorithm. The optimal Bayesian fault prediction and control scheme, considering long-run average availability maximization along with a practical statistical constraint, has been proposed and compared with the age-based replacement policy. The optimal control limit and sampling interval are calculated in the semi-Markov decision process (SMDP) framework. Another Bayesian fault prediction and control scheme has been developed based on the average run length (ARL) criterion. Comparisons with traditional control charts are provided. Formulae for the mean residual life and the distribution function of system residual life have been derived in explicit forms as functions of a posterior probability statistic. The advantage of the Bayesian model over the well-known 2-parameter Weibull model in system residual life prediction is shown. The methodologies are illustrated using simulated data, real data obtained from the spectrometric analysis of oil samples collected from transmission units of heavy hauler trucks in the mining industry, and vibration data from a planetary gearbox machinery application.
9

Application of Hidden Markov and Hidden Semi-Markov Models to Financial Time Series / Application of Hidden Markov and Hidden Semi-Markov Models to Financial Time Series

Bulla, Jan 06 July 2006 (has links)
No description available.
10

Contribution to deterioration modeling and residual life estimation based on condition monitoring data / Contribution à la modélisation de la détérioration et à l'estimation de durée de vie résiduelle basées sur les données de surveillance conditionnelle

Le, Thanh Trung 08 December 2015 (has links)
La maintenance prédictive joue un rôle important dans le maintien des systèmes de production continue car elle peut aider à réduire les interventions inutiles ainsi qu'à éviter des pannes imprévues. En effet, par rapport à la maintenance conditionnelle, la maintenance prédictive met en œuvre une étape supplémentaire, appelée le pronostic. Les opérations de maintenance sont planifiées sur la base de la prédiction des états de détérioration futurs et sur l'estimation de la vie résiduelle du système. Dans le cadre du projet européen FP7 SUPREME (Sustainable PREdictive Maintenance for manufacturing Equipment en Anglais), cette thèse se concentre sur le développement des modèles de détérioration stochastiques et sur des méthodes d'estimation de la vie résiduelle (Remaining Useful Life – RUL en anglais) associées pour les adapter aux cas d'application du projet. Plus précisément, les travaux présentés dans ce manuscrit sont divisés en deux parties principales. La première donne une étude détaillée des modèles de détérioration et des méthodes d'estimation de la RUL existant dans la littérature. En analysant leurs avantages et leurs inconvénients, une adaptation d’une approche de l'état de l'art est mise en œuvre sur des cas d'études issus du projet SUPREME et avec les données acquises à partir d’un banc d'essai développé pour le projet. Certains aspects pratiques de l’implémentation, à savoir la question de l'échange d'informations entre les partenaires du projet, sont également détaillées dans cette première partie. La deuxième partie est consacrée au développement de nouveaux modèles de détérioration et les méthodes d'estimation de la RUL qui permettent d'apporter des éléments de solutions aux problèmes de modélisation de détérioration et de prédiction de RUL soulevés dans le projet SUPREME. Plus précisément, pour surmonter le problème de la coexistence de plusieurs modes de détérioration, le concept des modèles « multi-branche » est proposé. Dans le cadre de cette thèse, deux catégories des modèles de type multi-branche sont présentées correspondant aux deux grands types de modélisation de l'état de santé des système, discret ou continu. Dans le cas discret, en se basant sur des modèles markoviens, deux modèles nommés Mb-HMM and Mb-HsMM (Multi-branch Hidden (semi-)Markov Model en anglais) sont présentés. Alors que dans le cas des états continus, les systèmes linéaires à sauts markoviens (JMLS) sont mis en œuvre. Pour chaque modèle, un cadre à deux phases est implémenté pour accomplir à la fois les tâches de diagnostic et de pronostic. A travers des simulations numériques, nous montrons que les modèles de type multi-branche peuvent donner des meilleures performances pour l'estimation de la RUL par rapport à celles obtenues par des modèles standards mais « mono-branche ». / Predictive maintenance plays a crucial role in maintaining continuous production systems since it can help to reduce unnecessary intervention actions and avoid unplanned breakdowns. Indeed, compared to the widely used condition-based maintenance (CBM), the predictive maintenance implements an additional prognostics stage. The maintenance actions are then planned based on the prediction of future deterioration states and residual life of the system. In the framework of the European FP7 project SUPREME (Sustainable PREdictive Maintenance for manufacturing Equipment), this thesis concentrates on the development of stochastic deterioration models and the associated remaining useful life (RUL) estimation methods in order to be adapted in the project application cases. Specifically, the thesis research work is divided in two main parts. The first one gives a comprehensive review of the deterioration models and RUL estimation methods existing in the literature. By analyzing their advantages and disadvantages, an adaption of the state of the art approaches is then implemented for the problem considered in the SUPREME project and for the data acquired from a project's test bench. Some practical implementation aspects, such as the issue of delivering the proper RUL information to the maintenance decision module are also detailed in this part. The second part is dedicated to the development of innovative contributions beyond the state-of-the-are in order to develop enhanced deterioration models and RUL estimation methods to solve original prognostics issues raised in the SUPREME project. Specifically, to overcome the co-existence problem of several deterioration modes, the concept of the "multi-branch" models is introduced. It refers to the deterioration models consisting of different branches in which each one represent a deterioration mode. In the framework of this thesis, two multi-branch model types are presented corresponding to the discrete and continuous cases of the systems' health state. In the discrete case, the so-called Multi-branch Hidden Markov Model (Mb-HMM) and the Multi-branch Hidden semi-Markov model (Mb-HsMM) are constructed based on the Markov and semi-Markov models. Concerning the continuous health state case, the Jump Markov Linear System (JMLS) is implemented. For each model, a two-phase framework is carried out for both the diagnostics and prognostics purposes. Through numerical simulations and a case study, we show that the multi-branch models can help to take into account the co-existence problem of multiple deterioration modes, and hence give better performances in RUL estimation compared to the ones obtained by standard "single branch" models.

Page generated in 0.0901 seconds