• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Philosophy of Mathematics: A Study of Indispensability and Inconsistency

Thornhill, Hannah C. 01 January 2016 (has links)
This thesis examines possible philosophies to account for the practice of mathematics, exploring the metaphysical, ontological, and epistemological outcomes of each possible theory. Through a study of the two most probable ideas, mathematical platonism and fictionalism, I focus on the compelling argument for platonism given by an appeal to the sciences. The Indispensability Argument establishes the power of explanation seen in the relationship between mathematics and empirical science. Cases of this explanatory power illustrate how we might have reason to believe in the existence of mathematical entities present within our best scientific theories. The second half of this discussion surveys Newtonian Cosmology and other inconsistent theories as they pose issues that have received insignificant attention within the philosophy of mathematics. The application of these inconsistent theories raises questions about the effectiveness of mathematics to model physical systems.
2

Towards a fictionalist philosophy of mathematics

Knowles, Robert Frazer January 2015 (has links)
In this thesis, I aim to motivate a particular philosophy of mathematics characterised by the following three claims. First, mathematical sentences are generally speaking false because mathematical objects do not exist. Second, people typically use mathematical sentences to communicate content the truth of which does not require mathematical objects to exist. Finally, in using mathematical language in this way, speakers are not doing anything out of the ordinary: they are performing straightforward assertions. In Part I, I argue that the role played by mathematics in our scientific explanations is a purely expressive one, merely allowing us to say more than we otherwise would be able to about, or yielding a greater understanding of, the physical world. Mathematical objects to not need to exist for mathematical language to play this role. This proposal puts a normative constraint on our use of mathematical language: we ought to use mathematically presented theories to express belief only in the consequences they have for non-mathematical things. In Part II, I will argue that what the normative proposal recommends is in fact what people generally do in both pure and applied mathematical contexts. I motivate this claim by showing that it is predicted by our best general means of analysing natural language. I provide a semantic theory of applied arithmetical sentences and show that they do not purport to refer to numbers, as well as a pragmatic theory for pure mathematical language use which shows that pure mathematical utterances do not typically communicate content that implies the existence of mathematical objects. In conclusion, I show the hermeneutic fictionalist position that emerges is preferable to any alternative which interprets mathematical discourse as aimed at describing a domain of independently existing abstract mathematical objects.
3

Justified existential belief: an investigation of the justifiability of believing in the existence of abstract mathematical objects

Melanson, William Jason 13 March 2006 (has links)
No description available.
4

Objects and objectivity : Alternatives to mathematical realism

Gullberg, Ebba January 2011 (has links)
This dissertation is centered around a set of apparently conflicting intuitions that we may have about mathematics. On the one hand, we are inclined to believe that the theorems of mathematics are true. Since many of these theorems are existence assertions, it seems that if we accept them as true, we also commit ourselves to the existence of mathematical objects. On the other hand, mathematical objects are usually thought of as abstract objects that are non-spatiotemporal and causally inert. This makes it difficult to understand how we can have knowledge of them and how they can have any relevance for our mathematical theories. I begin by characterizing a realist position in the philosophy of mathematics and discussing two of the most influential arguments for that kind of view. Next, after highlighting some of the difficulties that realism faces, I look at a few alternative approaches that attempt to account for our mathematical practice without making the assumption that there exist abstract mathematical entities. More specifically, I examine the fictionalist views developed by Hartry Field, Mark Balaguer, and Stephen Yablo, respectively. A common feature of these views is that they accept that mathematics interpreted at face value is committed to the existence of abstract objects. In order to avoid this commitment, they claim that mathematics, when taken at face value, is false. I argue that the fictionalist idea of mathematics as consisting of falsehoods is counter-intuitive and that we should aim for an account that can accommodate both the intuition that mathematics is true and the intuition that the causal inertness of abstract mathematical objects makes them irrelevant to mathematical practice and mathematical knowledge. The solution that I propose is based on Rudolf Carnap's distinction between an internal and an external perspective on existence. I argue that the most reasonable interpretation of the notions of mathematical truth and existence is that they are internal to mathematics and, hence, that mathematical truth cannot be used to draw the conclusion that mathematical objects exist in an external/ontological sense.

Page generated in 0.1354 seconds