• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The costs of reproduction in evolutionary demography : an application of Multitrait Population Projection Matrix models / Les coûts de la reproduction en démographie évolutive : Une application des modèles de Matrices de Projection de Population Multitrait

Coste, Christophe 20 November 2017 (has links)
Les coûts de la reproduction sont un compromis biologique (trade-off ) fondamental en théorie des histoires de vie. Par ce compromis, le succès, pour un organisme, d’un évènement de reproduction réduit sa survie et sa fertilité futures. Pour les écologues, ce trade-off correspond principalement à un compromis physiologique résultant d’un processus d’allocation ayant lieu à chaque instant et au niveau de chaque individu. Au contraire, en démographie évolutive, il est envisagé comme un trade-off génétique découlant du polymorphisme génotypique d’un gène pléiotropique agissant de manière antagoniste sur la reproduction aux jeunes âges et la fitness aux âges élevés. L’étude des mécanismes des coûts de la reproduction, physiologiques et génétiques, de leur possible cohabitation et de leur effets relatifs, croisés et conjoints est le sujet de cette thèse. Un examen attentif de la définition originelle des coûts de la reproduction par Williams (1966), nous permet de construire un modèle théorique des coûts physiologiques intégrant leurs aspects mécaniques et évolutifs. Cette construction nous permet d’induire l’intensité des coûts de la reproduction selon la position d’un organisme sur trois continuums d’histoire de vie: "slow-fast", "income-capital breeders" et "quantity-quality".A partir de la décomposition, par Stearns (1989b), de l’architecture des contraintes d’histoire de vie en trois parties – le niveau génotypique, la structure intermédiaire et le niveau phénotypique – nous étendons notre modèle conceptuel pour y intégrer à la fois des trade-offs physiologiques et génétiques. Cela nous permet d’inférer les effets de l’environnement, de sa variance et de la stochasticité individuelle sur la détectabilité de chaque famille de coûts. La différence entre coûts physiologiques et génétiques se retrouve également dans leur modélisation mathématique. Il est donc nécessaire de développer de nouveaux modèles permettant d’incorporer coûts physiologiques et génétiques. Nous proposons ensuite une méthode vectorielle de construction d’un tel type de modèle, que nous appelons Matrice de Projection de Population Multitrait (MPPM). Ce dernier peut implémenter chaque type de coût en l’intégrant dans la matrice en tant que trait. Nous étendons ensuite aux MPPMs les techniques d’analyse de sensibilité, standards en démographie évolutive, des modèles à un trait aux MPPMs. Surtout, nous décrivons un nouvel outil d’analyse, pertinent en théorie des histoires de vie et en démographie évolutive: la Trait Level Analysis. Elle consiste à comparer des modèles qui partagent les mêmes propriétés asymptotiques. Ceci est rendu possible par le repliement d’une MPPM selon certains traits, une opération qui réduit le nombre de traits du modèle en moyennant ses transitions selon les abondances ergodiques relatives. Ainsi, la Trait Level Analysis permet de mesurer l’importance évolutive des coûts de la reproduction en comparant des modèles implémentant ces coûts, avec des versions ergodiquement équivalentes de ces modèles mais repliées selon les traits supportant les compromis. Nous utilisons des méthodes, classiques et nouvelles, de calculs des moments de la fitness – gradient de sélection, variance du succès reproducteur, variance environnementale – que nous appliquons aux modèles avec coûts et sans coûts afin de mesurer leurs effets démographiques et évolutifs. Nous présentons les effets conjoints des coûts physiologiques et génétiques sur la distribution par âge des taux vitaux d’une population. Nous montrons également comment les coûts physiologiques influencent les deux composants de la sélection efficace, en aplatissant le gradient de sélection d’un côté et en accroissant la taille efficace de la population de l’autre. Enfin, nous démontrons comment l’effet tampon des coûts sur les variances environnementales et démographiques améliore la résilience d’une population soumise aux coûts physiologiques de la reproduction / Costs of reproduction are pervasive in life history theory. Through this constraint, the reproductive effort of an organism at a given time negatively affects its later survival and fertility. For life historians, they correspond mostly to a physiological trade-off that stems from an allocative process, occurring at each time-step, at the level of the individual. For evolutionary demographers, they are essentially about genetic trade-offs, arising from a genetic variance in a pleiotropic gene acting antagonistically on early-age and late-age fitness components. The study, from an evolutionary demographic standpoint, of these mechanisms and of the relative, cross and joint effects of physiological and genetic costs, is the aim of this thesis. The close examination of Williams (1966)’s original definition of the physiological costs of reproduction led us to produce a theoretical design of their apparatus that accounts for both their mechanistic and evolutionary mechanisms. This design allowed us to make predictions with regards to the strength of costs of reproduction for various positions of organisms on three life-history spectra: slow-fast, income-capital breeders and quality-quantity. From Stearns (1989b)’s tryptic architecture of life history trade-offs –that divides their structure into the genotypic level, the intermediate structure and the phenotypic level – we devised a general framework, which models the possible cohabitation of both physiological and genetic costs. From this, we inferred differing detectability patterns of both types of costs according to the environmental conditions, their variance and individual stochasticity. We could also establish that both costs buffer environmental variations, but with varying time windows of effect. Their dissimilarity emerges also from the differences between mathematical projection models specific to each cost. A new family of evolutionary models is therefore required to implement both physiological and genetic trade-offs. We then describe the vector-based construction method for such a model which we call Multitrait Population Projection Matrix (MPPM) and which allows incorporating both types of costs by embedding them as traits into the matrix. We extend the classical sensitivity analysis techniques of evolutionary demography to MPPMs. Most importantly, we present a new analysis tool for both life history and evolutionary demography: the Trait Level Analysis. It consists in comparing pairs of models that share the same asymptotic properties. Such ergodic equivalent matrices are produced by folding, an operation that consists in reducing the number of traits of a multi-trait model, by averaging transitions for the traits folded upon, whilst still preserving the asymptotic flows. The Trait Level Analysis therefore allows, for example, to measure the evolutionary importance of costs of reproduction by comparing models incorporating them with folded versions of these models from which the costs are absent. Using classical and new methods to compute fitness moments – selection gradient, variance in reproductive success, environmental variance - in models with and without the costs, we can show their effects on various demographic and evolutionary measures. We reveal, in this way, the combined effects of genetic and physiological costs on the vital rates of an age-structured population. We also demonstrate how physiological costs affect both components of effective selection, as they flatten the slope of selection gradients and increase the effective size of a population. Finally, we show how their buffering of environmental and demographic variance confer greater resilience to populations experiencing physiological costs of reproduction
12

Mathematical models of social-ecological systems: Coupling human behavioural and environmental dynamics

Sun, Tithnara Anthony 31 March 2020 (has links)
There is an increasing concern for the impact of humans on the environment. Traditionally, ecological models consider human influence as a constant or linearly varying parameter, whereas socioeconomic models and frameworks tend to oversimplify the ecological system. But tackling complex environmental challenges faced by our societies requires interdisciplinary approaches due to the intricate feedbacks between the socioeconomic and ecological systems involved. Thus, models of social-ecological systems couple an ecological system with a socioeconomic system to investigate their interaction in the integrated dynamical system. We define this coupling formally and apply the social-ecological approach to three ecological cases. Indeed, we focus on eutrophication in shallow freshwater lakes, which is a well-known system showing bistability between a clear water state and a turbid polluted state. We also study a model accounting for an aquifer (water stock) and a model accounting for a biotic population exhibiting bistability through an Allee effect. The socioeconomic dynamics is driven by the incentive that agents feel to act in a desirable or undesirable way. This incentive can be represented by a difference in utility, or in payoff, between two strategies that each agent can adopt: agents can cooperate and act in an environment-friendly way, or they can defect and act in an ecologically undesirable way. The agents' motivation includes such factors as the economic cost of their choice, the concern they feel for the environment and conformism to the collective attitude of the human group. Thus, the incentive to cooperate responds to the state of the ecological system and to the agents' collective opinion, and this response can be linear, nonlinear and monotonic, or non-monotonic. When investigating the mathematical form of this response, we find that monotonic non-linear responses may result in additional equilibria, cycles and basins of attraction compared to the linear case. Non-monotonic responses, such as resignation effects, may produce much more complicated nullclines such as a closed nullcline and weaken our ability to anticipate the dynamics of a social-ecological system. Regarding the modelling of the socioeconomic subsystem, the replicator dynamics and the logit best-response dynamics are widely used mathematical formulations from evolutionary game theory. There seems to be little awareness about the impact of choosing one or the other. The replicator dynamics assumes that the socioeconomic subsystem is stationary when all agents adopt the same behaviour, whereas the best-response dynamics assumes that this situation is not stationary. The replicator dynamics has formal game theoretical foundations, whereas best-response dynamics comes from psychology. Recent experiments found that the best-response dynamics explains empirical data better. We find that the two dynamics can produce a different number of equilibria as well as differences in their stability. The replicator dynamics is a limit case of the logit best-response dynamics when agents have an infinite rationality. We show that even generic social-ecological models can show multistability. In many cases, multistability allows for counterintuitive equilibria to emerge, where ecological desirability and socioeconomic desirability are not correlated. This makes generic management recommendations difficult to find and several policies with and without socioeconomic impact should be considered. Even in cases where there is a unique equilibrium, it can lose stability and give rise to sustained oscillations. We can interpret these oscillations in a way similar to the cycles found in classical predator-prey systems. In the lake pollution social-ecological model for instance, the agents' defection increases the lake pollution, which makes agents feel concerned and convince the majority to cooperate. Then, the ecological concern decreases because the lake is not polluted and the incentive to cooperate plummets, so that it becomes more advantageous for the agents to defect again. We show that the oscillations obtained when using the replicator dynamics tend to produce a make-or-break dynamics, where a random perturbation could shift the system to either full cooperation or full defection depending on its timing along the cycle. Management measures may shift the location of the social-ecological system at equilibrium, but also make attractors appear or disappear in the phase plane or change the resilience of stable steady states. The resilience of equilibria relates to basins of attraction and is especially important in the face of potential regime shifts. Sources of uncertainty that should be taken into account for the management of social-ecological systems include multistability and the possibility of counterintuitive equilibria, the wide range of possible policy measures with or without socioeconomic interventions, and the behaviour of human collectives involved, which may be described by different dynamics. Yet, uncertainty coming from the collective behaviour of agents is mitigated if they do not give up or rely on the other agents' efforts, which allows modelling to better inform decision makers.
13

Wirkung von Umweltchemikalien auf Gammarus fossarum - Populationsexperimente und individuenbasiertes Reproduktionsmodell

Schmidt, Jens 10 November 2003 (has links)
Das Schutzziel in der Ökotoxikologie ist die Population. Un­ter­suchungen zur Wirkung von subletalen Konzentrationen einer Umweltchemikalie auf Populationsebene, zum Beispiel mit künst­lichen Fließgewässersystemen (Mikrokosmen) können aussagekräftigere Beiträge zur ökotoxikologischen Bewertung einer Umweltchemikalie liefern. Außerdem können bei solchen Untersuchungen mögliche indirekte Effekte erfaßt werden. Über die Reaktion von Fließgewässer-Biozönosen gegenüber Um­welt­chemikalien ist relativ wenig bekannt. Die überwiegende Zahl der Untersuchungen zur Abschätzung des Ge­fähr­dungs­po­tentials von Umweltchemikalien wurde mit Testsystemen für Lebensgemeinschaften in stehenden Gewässern untersucht. Die Übertragbarkeit der Ergebnisse dieser Tests auf Fließgewässer-Lebensgemeinschaften ist meist nicht gegeben. Daher ist es notwendig Testsysteme zu etablieren, mit denen die Wirkung von Umweltchemikalien auf Fließgewässer-Le­bens­ge­mein­schaf­ten untersucht werden kann. In einem Gewächshaus wurden fünf Fließrinnen etabliert, mit denen die physikalisch-chemischen Bedingungen in einem Bach simuliert werden können. Im Ge­gensatz zu Untersuchungen einer komplexen Le­bens­ge­mein­schaft mit hoher Variabilität, wie sie sich beispielsweise durch das Einbringen von na­tür­lich­em Sediment aus Fließgewässern einstellt, wurde in diesen Experimenten die Wirkung von Che­mikalien auf eine einfache Lebensgemeinschaft untersucht. Die Le­bens­ge­mein­schaft in den Fließrinnen bestand deshalb aus wenigen, aus­ge­wählten Arten. Untersucht wurden die Kon­zen­tra­tionen 0,6, 6, 60 und 600 µg/l (Terbutryn) und 0,05, 0,5, 5 und 50 µg/l (Fenoxycarb). Gegenstand der vorliegenden Arbeit waren die Untersuchungen mit Gammarus fossarum. In einem akuten Toxizitätstest wurde die LC50 von Terbutryn für adulte und juvenile Gammariden ermittelt. In den Fließ­rin­nen­ex­perimenten mit Terbutryn und Fenoxycarb wurden po­pu­la­tions­relevante Pa­ra­meter der Gammaridenpopulationen untersucht. Ob und in welchem Um­fang sich Effekte, die mit den Stan­dard­tests gemessen wurden, auf bestimmte öko­toxi­ko­lo­gi­sche End­punkte der Population auswirken, kann nicht immer unmittelbar abgeleitet werden. Eine Möglichkeit wäre die aufwendige Durchführung von Po­pu­la­tionsexperimenten mit einfachen oder komplexeren Mo­dell­öko­systemen über eine lange Zeit. Eine andere Möglichkeit ist die Nutzung mathematischer Modelle zur Beschreibung der Populationsdynamik. Das begleitend zu den Untersuchungen entwickelte individuenbasierte Re­pro­duk­tions­modell GamMod bildet die Populationsdynamik einer ab­ge­schlos­senen Population von Gammarus fossarum in künstlichen Fließgewässersystemen ab. Es wird die Struktur und Dy­na­mik des realen Systems (Populationsdynamik) unter Ein­beziehung der Kenntnisse des Reproduktionszyklus modelliert. Mo­dell­szenarien sollen Aus­sagen über den Einfluß der Än­der­ung einer Variablen bezüglich der Populationsdynamik liefern.

Page generated in 0.0885 seconds