• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 7
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Learning to trust, learning to be trustworthy

Berger, Ulrich 01 1900 (has links) (PDF)
Interpersonal trust is a one-sided social dilemma. Building on the binary trust game, we ask how trust and trustworthiness can evolve in a population where partners are matched randomly and agents sometimes act as trustors and sometimes as trustees. Trustors have the option to costly check a trustee's last action and to condition their behavior on the signal they receive. We show that the resulting population game admits two components of Nash equilibria. Nevertheless, the long-run outcome of an evolutionary social learning process modeled by the best response dynamics is unique. Even if unconditional distrust initially abounds, the trustors' checking option leads trustees to build a reputation for trustworthiness by honoring trust. This invites free-riders among the trustors who save the costs of checking and trust blindly, until it does no longer pay for trustees to behave in a trustworthy manner. This results in cyclical convergence to a mixed equilibrium with behavioral heterogeneity where suspicious checking and blind trusting coexist while unconditional distrust vanishes. (author's abstract) / Series: Department of Economics Working Paper Series
2

Non-algebraic convergence proofs for continuous-time fictitious play

Berger, Ulrich January 2012 (has links) (PDF)
In this technical note we use insights from the theory of projective geometry to provide novel and non-algebraic proofs of convergence of continuous-time fictitious play for a class of games. As a corollary we obtain a kind of equilibrium selection result, whereby continuous-time fictitious play converges to a particular equilibrium contained in a continuum of equivalent equilibria for symmetric 4x4 zero-sum games.
3

Redukce strategických her na jejich Best-Response ekvivalenty / Reduction of Strategic Games to their Best-Response Equivalents

Godula, Martin January 2011 (has links)
The main goal of this masther thesis is design and implementation of library for reduction of strategy profiles of strategy games in normal form. Logics of library functionality will be based on suitable heuristics founded on methods of iterative elimination of dominated strategies and FDDS. Functionality of resultant library will be demonstrated on convenient problems.
4

Applications of game theory to distributed routing and delay tolerant networking / Applications de la théorie des jeux au routage distribué et aux réseaux tolérants aux délais

Seregina, Tatiana 18 November 2014 (has links)
Deux situations de comportement égoïste des agents dans les réseaux de communication sont considérées dans le cadre de la théorie des jeux.La première situation concerne les réseaux de communication utilisant un routage décentralisé basé sur des agents autonomes. Nous étudions les propriétés de convergence des dynamiques de meilleures réponses dans un jeu de routage sur des liens parallèles. Le jeu implique un nombre fini d'agents, chacun décidant comment son trafic est routé sur les liens de manière à minimiser son propre coût. Nous proposons l'utilisation du rayon spectral généralisé des matrices Jacobiennes de l'opérateur de meilleure réponse pour démontrer la convergence.La seconde situation apparaît dans les réseaux tolérants aux délais dont l'objectif est de permettre la communication dans des environnements où la connectivité n'est qu'intermittente et où les délais de communication peuvent être très longs. Nous proposons tout d'abord un mécanisme d'incitation basé sur une récompense pour convaincre les noeuds mobiles de relayer les messages, et analysons l'influence de l'information donnée par la source (nombre de copies du message, âge de ces copies) aux relais sur le prix à payer pour transmettre le message. Nous considérons ensuite un modèle dans lequel la source propose une récompense fixe. Les noeuds mobiles peuvent alors décider d'accepter ou non le message, et s'ils l'acceptent, peuvent ensuite à tout moment décider de l'abandonner. Nous modélisons l'interaction entre les noeuds mobiles sous la forme d'un jeu stochastique partiellement observable et analysons les politiques optimales pour les relais. / This thesis focuses on the issues related to the selfish behavior of the agents in the communication networks. We are particularly interested in two situations in which these issues arise and we address game-theoretical framework to study them.The first situation relates to communication networks using a distributed routing based on autonomous agents. Compared to a centralized routing, this type of routing offers significant advantages in terms of scalability, ease of deployment or robustness to failures and environmental disturbances. We investigate the convergence properties of the sequential best-response dynamics in a routing game over parallel links. The game involves a finite number of routing agents each of which decides how much flow to route on each of the links with the objective of minimizing its own costs. For some particular cases (e.g., two players), the convergence of the best-response dynamics can be proved by showing that this game has a potential function. For other cases, a potential function has remained elusive. We propose the use of non-linear spectral radius of the Jacobian of the best-response dynamics as an alternative approach to proving its convergence.The second situation occurs in Delay Tolerant Networks (DTNs) that have been the subject of intensive research over the past decade. DTN has an idea to support communication in environments where connectivity is intermittent and where communication delays can be very long. We focus on game-theoretic models for DTNs. First, we propose an incentive mechanism to persuade selfish mobile nodes to participate in relaying messages, and investigate the influence of the information given by the source (number of existing copies of the message, age of these copies) to the relays on the rewards proposed. For static information polices, that is the same type of information given to all the relays, it is shown that the expected reward paid by the source is independent of the policy. However, the source can reduce the reward by dynamically adapting the type of information based on the meeting times with the relays. For the particular cases, we give some structural results of the optimal adaptive policy. Next, we consider the model where the source proposes a fixed reward. The mobile relays can decide to accept or not the packet and then to drop the packet in the future. This game can be modelled as a partially-observable stochastic game. For two relays, we have shown that the optimal policies for the relays relates to the threshold type.
5

Differentiable best response shaping

Aghajohari, Milad 07 1900 (has links)
Cette thèse est structurée en quatre sections. La première constitue une introduction au problème de la formation d'agents coopératifs non exploitables dans les jeux à somme non nulle. La deuxième section, soit le premier chapitre, fournit le contexte nécessaire pour discuter de l'étendue et des outils mathématiques requis pour explorer ce problème. La troisième section, correspondant au deuxième chapitre, expose un cadre spécifique, nommé Best Response Shaping, que nous avons élaboré pour relever ce défi. La quatrième section contient les conclusions que nous tirons de ce travail et nous y discutons des travaux futurs potentiels. Le chapitre introductif se divise en quatre sections. Dans la première, nous présentons le cadre d'apprentissage par renforcement (Reinforcement Learning) afin de formaliser le problème d'un agent interagissant avec l'environnement pour maximiser une récompense scalaire. Nous introduisons ensuite les Processus Décisionnels de Markov (Markov Decision Processes) en tant qu'outil mathématique pour formaliser le problème d'apprentissage par renforcement. Nous discutons de deux méthodes générales de solution pour résoudre le problème d'apprentissage par renforcement. Les premières sont des méthodes basées sur la valeur qui estiment la récompense cumulée optimale réalisable pour chaque paire action-état, et la politique serait alors apprise. Les secondes sont des méthodes basées sur les politiques où la politique est optimisée directement sans estimer les valeurs. Dans la deuxième section, nous introduisons le cadre d'apprentissage par renforcement multi-agents (Multi-Agent Reinforcement Learning) pour formaliser le problème de plusieurs agents tentant de maximiser une récompense cumulative scalaire dans un environnement partagé. Nous présentons les Jeux Stochastiques comme une extension théorique du processus de décision de Markov pour permettre la présence de plusieurs agents. Nous discutons des trois types de jeux possibles entre agents en fonction de la structure de leur système de récompense. Nous traitons des défis spécifiques à l'apprentissage par renforcement multi-agents. En particulier, nous examinons le défi de l'apprentissage par renforcement profond multi-agents dans des environnements partiellement compétitifs, où les méthodes traditionnelles peinent à promouvoir une coopération non exploitable. Dans la troisième section, nous introduisons le Dilemme du prisonnier itéré (Iterated Prisoner's Dilemma) comme un jeu matriciel simple utilisé comme exemple de jouet pour étudier les dilemmes sociaux. Dans la quatrième section, nous présentons le Coin Game comme un jeu à haute dimension qui doit être résolu grâce à des politiques paramétrées par des réseaux de neurones. Dans le deuxième chapitre, nous introduisons la méthode Forme de la Meilleure Réponse (Best Response Shaping). Des approches existantes, comme celles des agents LOLA et POLA, apprennent des politiques coopératives non exploitables en se différenciant grâce à des étapes d'optimisation prédictives de leur adversaire. Toutefois, ces techniques présentent une limitation majeure car elles sont susceptibles d'être exploitées par une optimisation supplémentaire. En réponse à cela, nous introduisons une nouvelle approche, Forme de la Meilleure Réponse, qui se différencie par le fait qu'un adversaire approxime la meilleure réponse, que nous appelons le "détective". Pour conditionner le détective sur la politique de l'agent dans les jeux complexes, nous proposons un mécanisme de conditionnement différenciable sensible à l'état, facilité par une méthode de questions-réponses (QA) qui extrait une représentation de l'agent basée sur son comportement dans des états d'environnement spécifiques. Pour valider empiriquement notre méthode, nous mettons en évidence sa performance améliorée face à un adversaire utilisant l'Arbre de Recherche Monte Carlo (Monte Carlo Tree Search), qui sert d'approximation de la meilleure réponse dans le Coin Game. / This thesis is organized in four sections.The first is an introduction to the problem of training non-exploitable cooperative agents in general-sum games. The second section, the first chapter, provides the necessary background for discussing the scope and necessary mathematical tools for exploring this problem. The third section, the second chapter, explains a particular framework, Best Response Shaping, that we developed for tackling this challenge. In the fourth section, is the conclusion that we drive from this work and we discuss the possible future works. The background chapter consists of four section. In the first section, we introduce the \emph{Reinforcement Learning } framework for formalizing the problem of an agent interacting with the environment maximizing a scalar reward. We then introduce \emph{Markov Decision Processes} as a mathematical tool to formalize the Reinforcement Learning problem. We discuss two general solution methods for solving the Reinforcement Learning problem. The first are Value-based methods that estimate the optimal achievable accumulative reward in each action-state pair and the policy would be learned. The second are Policy-based methods where the policy is optimized directly without estimating the values. In the second section, we introduce \emph{Multi-Agent Reinforcement Learning} framework for formalizing multiple agents trying to maximize a scalar accumulative reward in a shared environment. We introduce \emph{Stochastic Games} as a theoretical extension of the Markov Decision Process to allow multiple agents. We discuss the three types of possible games between agents based on the setup of their reward structure. We discuss the challenges that are specific to Multi-Agent Reinforcement Learning. In particular, we investigate the challenge of multi-agent deep reinforcement learning in partially competitive environments, where traditional methods struggle to foster non-exploitable cooperation. In the third section, we introduce the \emph{Iterated Prisoner's Dilemma} game as a simple matrix game used as a toy-example for studying social dilemmas. In the Fourth section, we introduce the \emph{Coin Game} as a high-dimensional game that should be solved via policies parameterized by neural networks. In the second chapter, we introduce the Best Response Shaping (BRS) method. The existing approaches like LOLA and POLA agents learn non-exploitable cooperative policies by differentiation through look-ahead optimization steps of their opponent. However, there is a key limitation in these techniques as they are susceptible to exploitation by further optimization. In response, we introduce a novel approach, Best Response Shaping (BRS), which differentiates through an opponent approximating the best response, termed the "detective." To condition the detective on the agent's policy for complex games we propose a state-aware differentiable conditioning mechanism, facilitated by a question answering (QA) method that extracts a representation of the agent based on its behaviour on specific environment states. To empirically validate our method, we showcase its enhanced performance against a Monte Carlo Tree Search (MCTS) opponent, which serves as an approximation to the best response in the Coin Game. This work expands the applicability of multi-agent RL in partially competitive environments and provides a new pathway towards achieving improved social welfare in general sum games.
6

Non-Cooperative Games for Self-Interested Planning Agents

Jordán Prunera, Jaume Magí 03 November 2017 (has links)
Multi-Agent Planning (MAP) is a topic of growing interest that deals with the problem of automated planning in domains where multiple agents plan and act together in a shared environment. In most cases, agents in MAP are cooperative (altruistic) and work together towards a collaborative solution. However, when rational self-interested agents are involved in a MAP task, the ultimate objective is to find a joint plan that accomplishes the agents' local tasks while satisfying their private interests. Among the MAP scenarios that involve self-interested agents, non-cooperative MAP refers to problems where non-strictly competitive agents feature common and conflicting interests. In this setting, conflicts arise when self-interested agents put their plans together and the resulting combination renders some of the plans non-executable, which implies a utility loss for the affected agents. Each participant wishes to execute its plan as it was conceived, but congestion issues and conflicts among the actions of the different plans compel agents to find a coordinated stable solution. Non-cooperative MAP tasks are tackled through non-cooperative games, which aim at finding a stable (equilibrium) joint plan that ensures the agents' plans are executable (by addressing planning conflicts) while accounting for their private interests as much as possible. Although this paradigm reflects many real-life problems, there is a lack of computational approaches to non-cooperative MAP in the literature. This PhD thesis pursues the application of non-cooperative games to solve non-cooperative MAP tasks that feature rational self-interested agents. Each agent calculates a plan that attains its individual planning task, and subsequently, the participants try to execute their plans in a shared environment. We tackle non-cooperative MAP from a twofold perspective. On the one hand, we focus on agents' satisfaction by studying desirable properties of stable solutions, such as optimality and fairness. On the other hand, we look for a combination of MAP and game-theoretic techniques capable of efficiently computing stable joint plans while minimizing the computational complexity of this combined task. Additionally, we consider planning conflicts and congestion issues in the agents' utility functions, which results in a more realistic approach. To the best of our knowledge, this PhD thesis opens up a new research line in non-cooperative MAP and establishes the basic principles to attain the problem of synthesizing stable joint plans for self-interested planning agents through the combination of game theory and automated planning. / La Planificación Multi-Agente (PMA) es un tema de creciente interés que trata el problema de la planificación automática en dominios donde múltiples agentes planifican y actúan en un entorno compartido. En la mayoría de casos, los agentes en PMA son cooperativos (altruistas) y trabajan juntos para obtener una solución colaborativa. Sin embargo, cuando los agentes involucrados en una tarea de PMA son racionales y auto-interesados, el objetivo último es obtener un plan conjunto que resuelva las tareas locales de los agentes y satisfaga sus intereses privados. De entre los distintos escenarios de PMA que involucran agentes auto-interesados, la PMA no cooperativa se centra en problemas que presentan un conjunto de agentes no estrictamente competitivos con intereses comunes y conflictivos. En este contexto, pueden surgir conflictos cuando los agentes ponen en común sus planes y la combinación resultante provoca que algunos de estos planes no sean ejecutables, lo que implica una pérdida de utilidad para los agentes afectados. Cada participante desea ejecutar su plan tal como fue concebido, pero las congestiones y conflictos que pueden surgir entre las acciones de los diferentes planes fuerzan a los agentes a obtener una solución estable y coordinada. Las tareas de PMA no cooperativa se abordan a través de juegos no cooperativos, cuyo objetivo es hallar un plan conjunto estable (equilibrio) que asegure que los planes de los agentes sean ejecutables (resolviendo los conflictos de planificación) al tiempo que los agentes satisfacen sus intereses privados en la medida de lo posible. Aunque este paradigma refleja muchos problemas de la vida real, existen pocos enfoques computacionales para PMA no cooperativa en la literatura. Esta tesis doctoral estudia el uso de juegos no cooperativos para resolver tareas de PMA no cooperativa con agentes racionales auto-interesados. Cada agente calcula un plan para su tarea de planificación y posteriormente, los participantes intentan ejecutar sus planes en un entorno compartido. Abordamos la PMA no cooperativa desde una doble perspectiva. Por una parte, nos centramos en la satisfacción de los agentes estudiando las propiedades deseables de soluciones estables, tales como la optimalidad y la justicia. Por otra parte, buscamos una combinación de PMA y técnicas de teoría de juegos capaz de calcular planes conjuntos estables de forma eficiente al tiempo que se minimiza la complejidad computacional de esta tarea combinada. Además, consideramos los conflictos de planificación y congestiones en las funciones de utilidad de los agentes, lo que resulta en un enfoque más realista. Bajo nuestro punto de vista, esta tesis doctoral abre una nueva línea de investigación en PMA no cooperativa y establece los principios básicos para resolver el problema de la generación de planes conjuntos estables para agentes de planificación auto-interesados mediante la combinación de teoría de juegos y planificación automática. / La Planificació Multi-Agent (PMA) és un tema de creixent interès que tracta el problema de la planificació automàtica en dominis on múltiples agents planifiquen i actuen en un entorn compartit. En la majoria de casos, els agents en PMA són cooperatius (altruistes) i treballen junts per obtenir una solució col·laborativa. No obstant això, quan els agents involucrats en una tasca de PMA són racionals i auto-interessats, l'objectiu últim és obtenir un pla conjunt que resolgui les tasques locals dels agents i satisfaci els seus interessos privats. D'entre els diferents escenaris de PMA que involucren agents auto-interessats, la PMA no cooperativa se centra en problemes que presenten un conjunt d'agents no estrictament competitius amb interessos comuns i conflictius. En aquest context, poden sorgir conflictes quan els agents posen en comú els seus plans i la combinació resultant provoca que alguns d'aquests plans no siguin executables, el que implica una pèrdua d'utilitat per als agents afectats. Cada participant vol executar el seu pla tal com va ser concebut, però les congestions i conflictes que poden sorgir entre les accions dels diferents plans forcen els agents a obtenir una solució estable i coordinada. Les tasques de PMA no cooperativa s'aborden a través de jocs no cooperatius, en els quals l'objectiu és trobar un pla conjunt estable (equilibri) que asseguri que els plans dels agents siguin executables (resolent els conflictes de planificació) alhora que els agents satisfan els seus interessos privats en la mesura del possible. Encara que aquest paradigma reflecteix molts problemes de la vida real, hi ha pocs enfocaments computacionals per PMA no cooperativa en la literatura. Aquesta tesi doctoral estudia l'ús de jocs no cooperatius per resoldre tasques de PMA no cooperativa amb agents racionals auto-interessats. Cada agent calcula un pla per a la seva tasca de planificació i posteriorment, els participants intenten executar els seus plans en un entorn compartit. Abordem la PMA no cooperativa des d'una doble perspectiva. D'una banda, ens centrem en la satisfacció dels agents estudiant les propietats desitjables de solucions estables, com ara la optimalitat i la justícia. D'altra banda, busquem una combinació de PMA i tècniques de teoria de jocs capaç de calcular plans conjunts estables de forma eficient alhora que es minimitza la complexitat computacional d'aquesta tasca combinada. A més, considerem els conflictes de planificació i congestions en les funcions d'utilitat dels agents, el que resulta en un enfocament més realista. Des del nostre punt de vista, aquesta tesi doctoral obre una nova línia d'investigació en PMA no cooperativa i estableix els principis bàsics per resoldre el problema de la generació de plans conjunts estables per a agents de planificació auto-interessats mitjançant la combinació de teoria de jocs i planificació automàtica. / Jordán Prunera, JM. (2017). Non-Cooperative Games for Self-Interested Planning Agents [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90417
7

Les biens communs sans tragédie : effets de la pression sociale et des convictions

Bezault, Vincent 12 1900 (has links)
Pourquoi faire un effort pour la communauté sans rien recevoir en retour? C’est habituellement par conviction ou pour répondre à une norme sociale. En s’intéressant au problème du recyclage, nous définissons un modèle de comportement qui intègre ces deux facteurs. Nous déterminons sous quelles conditions un individu décide d’agir bénévolement, puis nous étudions comment ce comportement se propage dans la population. Cela nous permet de déduire comment un gouvernement doit pondérer ses efforts entre la publicité et la consigne pour tendre vers un taux de recyclage parfait au coût minimal. Nous prouvons aussi que dans certaines circonstances, il est préférable de ne pas encourager la participation au bien public. En effet, à mesure que plus de gens y participent, des tensions sociales émergent entre ceux qui font un effort et ceux qui n’en font pas. Celles-ci peuvent être assez fortes pour contrebalancer les bénéfices attendus du bien public / The commons need not be a tragedy: impact of peer-pressure and opinions Why do people help the community without getting anything in return? Usually, they either hold the firm belief they should do so or they want to follow a social norm. The behavioural model of this paper takes those two factors into account and applies them to recycling issues. It shows under which condition people act selflessly and how this behaviour spreads across the population. This paper then determines how governments must balance advertising and packaging refunding in order to increase recycling rate at minimal cost. It also proves that under certain circumstances it is preferable not to start transition toward cooperation. Indeed, as people progressively start cooperating, the population becomes divided between followers and opponents to this new attitude. As long as this heterogeneity remains, peer-pressure causes a cost that may outweigh the expected benefits of cooperation.
8

Dynamic opponent modelling in two-player games

Mealing, Richard Andrew January 2015 (has links)
This thesis investigates decision-making in two-player imperfect information games against opponents whose actions can affect our rewards, and whose strategies may be based on memories of interaction, or may be changing, or both. The focus is on modelling these dynamic opponents, and using the models to learn high-reward strategies. The main contributions of this work are: 1. An approach to learn high-reward strategies in small simultaneous-move games against these opponents. This is done by using a model of the opponent learnt from sequence prediction, with (possibly discounted) rewards learnt from reinforcement learning, to lookahead using explicit tree search. Empirical results show that this gains higher average rewards per game than state-of-the-art reinforcement learning agents in three simultaneous-move games. They also show that several sequence prediction methods model these opponents effectively, supporting the idea of using them from areas such as data compression and string matching; 2. An online expectation-maximisation algorithm that infers an agent's hidden information based on its behaviour in imperfect information games; 3. An approach to learn high-reward strategies in medium-size sequential-move poker games against these opponents. This is done by using a model of the opponent learnt from sequence prediction, which needs its hidden information (inferred by the online expectation-maximisation algorithm), to train a state-of-the-art no-regret learning algorithm by simulating games between the algorithm and the model. Empirical results show that this improves the no-regret learning algorithm's rewards when playing against popular and state-of-the-art algorithms in two simplified poker games; 4. Demonstrating that several change detection methods can effectively model changing categorical distributions with experimental results comparing their accuracies to empirical distributions. These results also show that their models can be used to outperform state-of-the-art reinforcement learning agents in two simultaneous-move games. This supports the idea of modelling changing opponent strategies with change detection methods; 5. Experimental results for the self-play convergence to mixed strategy Nash equilibria of the empirical distributions of plays of sequence prediction and change detection methods. The results show that they converge faster, and in more cases for change detection, than fictitious play.
9

Mathematical models of social-ecological systems: Coupling human behavioural and environmental dynamics

Sun, Tithnara Anthony 31 March 2020 (has links)
There is an increasing concern for the impact of humans on the environment. Traditionally, ecological models consider human influence as a constant or linearly varying parameter, whereas socioeconomic models and frameworks tend to oversimplify the ecological system. But tackling complex environmental challenges faced by our societies requires interdisciplinary approaches due to the intricate feedbacks between the socioeconomic and ecological systems involved. Thus, models of social-ecological systems couple an ecological system with a socioeconomic system to investigate their interaction in the integrated dynamical system. We define this coupling formally and apply the social-ecological approach to three ecological cases. Indeed, we focus on eutrophication in shallow freshwater lakes, which is a well-known system showing bistability between a clear water state and a turbid polluted state. We also study a model accounting for an aquifer (water stock) and a model accounting for a biotic population exhibiting bistability through an Allee effect. The socioeconomic dynamics is driven by the incentive that agents feel to act in a desirable or undesirable way. This incentive can be represented by a difference in utility, or in payoff, between two strategies that each agent can adopt: agents can cooperate and act in an environment-friendly way, or they can defect and act in an ecologically undesirable way. The agents' motivation includes such factors as the economic cost of their choice, the concern they feel for the environment and conformism to the collective attitude of the human group. Thus, the incentive to cooperate responds to the state of the ecological system and to the agents' collective opinion, and this response can be linear, nonlinear and monotonic, or non-monotonic. When investigating the mathematical form of this response, we find that monotonic non-linear responses may result in additional equilibria, cycles and basins of attraction compared to the linear case. Non-monotonic responses, such as resignation effects, may produce much more complicated nullclines such as a closed nullcline and weaken our ability to anticipate the dynamics of a social-ecological system. Regarding the modelling of the socioeconomic subsystem, the replicator dynamics and the logit best-response dynamics are widely used mathematical formulations from evolutionary game theory. There seems to be little awareness about the impact of choosing one or the other. The replicator dynamics assumes that the socioeconomic subsystem is stationary when all agents adopt the same behaviour, whereas the best-response dynamics assumes that this situation is not stationary. The replicator dynamics has formal game theoretical foundations, whereas best-response dynamics comes from psychology. Recent experiments found that the best-response dynamics explains empirical data better. We find that the two dynamics can produce a different number of equilibria as well as differences in their stability. The replicator dynamics is a limit case of the logit best-response dynamics when agents have an infinite rationality. We show that even generic social-ecological models can show multistability. In many cases, multistability allows for counterintuitive equilibria to emerge, where ecological desirability and socioeconomic desirability are not correlated. This makes generic management recommendations difficult to find and several policies with and without socioeconomic impact should be considered. Even in cases where there is a unique equilibrium, it can lose stability and give rise to sustained oscillations. We can interpret these oscillations in a way similar to the cycles found in classical predator-prey systems. In the lake pollution social-ecological model for instance, the agents' defection increases the lake pollution, which makes agents feel concerned and convince the majority to cooperate. Then, the ecological concern decreases because the lake is not polluted and the incentive to cooperate plummets, so that it becomes more advantageous for the agents to defect again. We show that the oscillations obtained when using the replicator dynamics tend to produce a make-or-break dynamics, where a random perturbation could shift the system to either full cooperation or full defection depending on its timing along the cycle. Management measures may shift the location of the social-ecological system at equilibrium, but also make attractors appear or disappear in the phase plane or change the resilience of stable steady states. The resilience of equilibria relates to basins of attraction and is especially important in the face of potential regime shifts. Sources of uncertainty that should be taken into account for the management of social-ecological systems include multistability and the possibility of counterintuitive equilibria, the wide range of possible policy measures with or without socioeconomic interventions, and the behaviour of human collectives involved, which may be described by different dynamics. Yet, uncertainty coming from the collective behaviour of agents is mitigated if they do not give up or rely on the other agents' efforts, which allows modelling to better inform decision makers.

Page generated in 0.0499 seconds