Spelling suggestions: "subject:"theorie dde khovanskii"" "subject:"theorie dde polanskii""
1 |
Etude quantitative des ensembles semi-pfaffiensZell, Thierry 12 December 2003 (has links) (PDF)
Dans la présente thèse, on établit des bornes supérieures sur les nombres de Betti des ensembles définis à l'aide de fonctions pfaffiennes, en fonction de la complexité pfaffienne (ou format) de ces ensembles. Les fonctions pfaffiennes ont été définies par Khovanskii, comme solutions au comportement quasi-polynomial de certains systèmes polynomiaux d'équations différentielles. Les ensembles semi-pfaffiens satisfont une condition de signe booléene sur des fonctions pfaffiennes, et les ensembles sous-pfaffiens sont projections de semi-pfaffiens. Wilkie a démontré que les fonctions pfaffiennes engendrent une structure o-minimale, et Gabrielov a montré que cette structure pouvait etre efficacement décrite par des ensembles pfaffiens limites. A l'aide de la théorie de Morse, de déformations, de recurrences sur le niveau combinatoire et de suites spectrales, on donne dans cette thèse des bornes effectives pourtoutes les catégories d'ensembles pré-citées.
|
Page generated in 0.0834 seconds