1 |
Inkubátor s regulací teploty a vlhkosti / Incubator with adjustable temperature and humidityHikaník, Matúš January 2011 (has links)
This project deals with comparing types and properties of commercial produced incubators for exotic birds. It searches the best solution from these area. In this project are compars individual components and their choice for realization in this project. Then in this project is solution of regulation temperature and humidity in engineered mechanism and discovered parameters of specifically space. Then is developed solution of thermostat and hydrosatat for this prototype. Temperature is changed by Peltier module, who is involved in correct system. Humidity is regulated by resistor humidifier. Complex system is managed by microcontroler. System communicates with PC via USB interface and Ethernet. Solution of this project is maked functional prototyp.
|
2 |
Výpočet teplotního pole přípojnicového mostu / Calculation of temperature field of the busbar bridgeMěrka, Ivan January 2016 (has links)
This term project’s aim is to theoreticaly analyze thermal phenomena and losses in electrical power devices, describe the design and application of UniGear ZS1 type switchgear, put together a computer simulation model for thermal calculations of current and optimized solution and finally to discuss obtained results and compare them with experimentally acquired values. The main objective of this project is to determine, whether simulation is a viable and reliable enough method, that it could replace the costly real life physical testing. Modelling of the progress of thermal processes in different parts of the examined busbar will be done in computer aided design program Solidworks and its simulation plugin Flow Simulation.
|
3 |
Tvorba laboratorních úloh pro předmět Vybrané partie z obnovitelných zdrojů a ukládání energie / Creation of laboratory tasks for Selected topics from renewable energy sources and energy storageVaněček, Lukáš January 2017 (has links)
This master‘s thesis contains a comprehensive laboratory task about saving a heat energy with a use of changing a state of matter. The thesis is written for the object Chosen passages of renewable resources and saving a heat energy. Part one presents a theoretical part of the topic, terminology and relations needed to make this laboratory work. It also contains a created procedure of partial tasks necessary to take laboratory measurements. The second part of the thesis is about measuring and evaluation of acquired values according to procedure described in the theoretical part of the thesis. Different variations considered during the creation of measuring procedure are also named here. The final part of the thesis describes a laboratory equipment necessary to complete the task and an example of filled protocol is attached.
|
4 |
Identifikace tepelné vodivosti a tepelné kapacity stavebních látek metodou „Hot Wire Method“ / Identification of Thermal Conductivity and Thermal Capacity of Building Materials by the "Hot Wire Method"Průša, David January 2019 (has links)
This aim of task deals with study of heat dissipation mechanisms and the description of physical phenomena, which is accompanied by non-stationary measurement of thermal characteristics by the method "hot-wire method". In particular, we observe the coefficient of thermal conductivity and its dependence on various variables such as the temperature of the measured sample, its moisture state, the volume of the sample and its porosity. The above mentioned findings are used for the invention of the measuring device of a nonstationary gauge, which is based on regular heating and is dedicated to measuring the thermal conductivity coefficient and the heat capacity by the "hot-wire method" method. In the last part of the thesis is verified functionality of the proposed measuring device, the suitability of the created algorithm for the processing of the measured data and the evaluation of the results was verified. The reproducibility of the measurements was verified and the measured results were compared with the measurement methods, which are commonly used. the influence of humidity on the coefficient of thermal conductivity.
|
5 |
Identifikace tepelné vodivosti a tepelné kapacity stavebních látek metodou „Hot Wire Method“ / Identification of Thermal Conductivity and Thermal Capacity of Building Materials by the "Hot Wire Method"Průša, David January 2019 (has links)
This aim of task deals with study of heat dissipation mechanisms and the description of physical phenomena, which is accompanied by non-stationary measurement of thermal characteristics by the method "hot-wire method". In particular, we observe the coefficient of thermal conductivity and its dependence on various variables such as the temperature of the measured sample, its moisture state, the volume of the sample and its porosity. The above mentioned findings are used for the invention of the measuring device of a nonstationary gauge, which is based on regular heating and is dedicated to measuring the thermal conductivity coefficient and the heat capacity by the "hot-wire method" method. In the last part of the thesis is verified functionality of the proposed measuring device, the suitability of the created algorithm for the processing of the measured data and the evaluation of the results was verified. The reproducibility of the measurements was verified and the measured results were compared with the measurement methods, which are commonly used. the influence of humidity on the coefficient of thermal conductivity.
|
6 |
Provozní vlastnosti LED a jejich modelování / Operational Parameters of LED and their ModellingPavelka, Tomáš January 2017 (has links)
Doctoral thesis deals with parameters of LED light sources and their static and dynamic changes due to variable operational conditions. Firstly there is briefly described the history of light emitting diodes, that brought LED from unintentional observation of luminescence to light source, which is generally used through the whole area of lighting techniques. Thesis focuses on light parameters analysis, which are specific for semiconductor light sources and their mutual relations. These relations in compliance with understanding the principles of light emission in semiconductor light sources enable establishing of basic connections and effects usable for LED behaviour model. Mutual relations of LED parameters and influencing factors are verified by measurement of chosen testing samples. For deeper understanding of diode parameter influencing mechanisms there are analysed current degradation models including degradation of partial components. On the basis of these facts there is created a model of LED luminaire operating with LED parameters together with cooling system that represent the integral part of the luminaire. Impact of supply drivers is also studied, because they are necessary for LED operation. Designed model supports the area of static changes of light parameters, as well as the dynamic changes of output parameters. Presented model is verified by testing measurements at basic operational states and partially outside of the common operational limits. There are also presented the possibilities of real use of the model that involve the evaluation of designed luminaire for specific light sources, searching for optimal operational limits, optimization of luminaire heatsink or using public lighting systems for regulation of electricity grid load fluctuations.
|
7 |
Studie över klimatförändringars påverkan på dynamisk ledningskapacitet / Study of the impact of climate change on dynamic line ratingHahne, Linnea January 2021 (has links)
The thesis aims to examine the impact of climate change on line rating and to investigate the possibility of a potential increase of capacity of an overhead line. The line rating of an overhead line determines how much current can be transmitted in the line. The weather parameters which affect the line rating are ambient temperature, solar radiation, wind speed, and wind direction. If the line rating is adapted to weather conditions, it is important to be able to predict how the weather will change in the future. Therefore, the impact of climate change on weather parameters is investigated. The ambient temperature and solar radiation are expected to change between different scenarios. However, it is unclear how wind speed and wind direction will be affected. Climate scenarios are designed that take these findings into account. The results show that wind speed has, by a large margin from other weather parameters, the largest impact on the dynamic line rating. This is followed by the wind's angle of attack to the conductor, ambient temperature, and finally solar radiation. For the designed climate scenarios, the dynamic line rating is almost the same in each case, which means that the calculated change in ambient temperature and solar radiation has no significant effect on the line rating. To further increase the capacity of the overhead line, the line could be upgraded with a conductor with a larger cross-sectional area.
|
8 |
Výzkum vlastností materiálů pro použití ve vysokoteplotním solárním tepelně-akumulačním zásobníku / Material properties research for use in high-temperature solar thermal storage tankŠot, František January 2018 (has links)
The use of thermal storage energy, using phase change materials appears to be an effective way to store thermal energy storage with the benefits of the high amount of energy while maintaining isothermal nature of the process. PCM methods are used in latent thermal storage systems for heat pumps, as well as in solar engineering or for temperature control in spacecraft. The past decade has extended these principles for cooling and heating in the building. There are a number of PCM systems, which operate over a wide temperature range, are used in various applications. This document includes a brief overview of the development and analysis of available thermal storage working mainly on the principle of PCM.
|
Page generated in 0.0413 seconds