• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 3
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 59
  • 59
  • 17
  • 13
  • 13
  • 12
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermal transport properties of polymers

Smith, D. I. January 1987 (has links)
No description available.
2

Experimental study of electron thermal transport in dense aluminum plasmas

Churina, Irina Vladimirovna 27 May 2010 (has links)
A novel approach to study electron thermal transport in dense plasmas was successfully implemented to measure the temperature-dependent conductivity and test the currently available dense plasma model by Lee and More. Intense, femtosecond laser pulses with energy up to 7 mJ per pulse were used to heat free-standing 170-370 nm aluminum foils. We carried-out a new approach to study the plasma transport properties of electron and thermal conduction. In this new approach, rather than probing the front (laser-heated) surface, probing was done on the back surface of a thicker metallic foil heated by a thermal conduction wave generated from a laser-heated front surface. Frequency-domain interferometry with chirped probe pulses allowed us to simultaneously measure the time-dependence of the optical reflectivity and phase-shift in a single shot with subpicosecond resolution. In addition, solid heating was observed to be dominated by the thermal conduction wave prior to the shock-wave breakout at the back surface when laser energy was directly deposited in a thin metallic foil. As a result we were able to estimate the optical conductivity of a dense aluminum plasma in the range of 0.1 – 1.5 eV. The optical parameters were calculated using the output of a hydrodynamic simulation along with the published models of bound electron contributions to the conductivity and were found to be in reasonable agreement with the measurement. We found that the Lee and More model of a dense plasma’s conductivity predicts the real and imaginary part of the measured optical conductivity to within 20%. The simulation results were then used to examine the temperature dependence of the conductivity for 170 and 230 nm aluminum foils heated with the 2-5 mJ pulses. In all cases the same conductivity was obtained, though the arrival of the heat wave and subsequent shock waves varied with the choice of intensity and target thickness. This consistency in the data gave us good confidence in the validity of this technique for deriving conductivity as a function of temperature. / text
3

Mode-Resolved Thermal Transport Across Semiconductor Heterostructures

Lu, Simon 01 September 2016 (has links)
Thermal transport across three-dimensional Lennard-Jones superlattices, two-dimensional heterostructures of graphene and hexagonal boron nitride (hBN), and in C60 molecular crystals is studied atomistically. The first two systems are studied as finite junctions placed between bulk leads, while the molecular crystal is studied as a bulk. Two computational methods are used: molecular dynamics (MD) simulations and harmonic lattice dynamics calculations in conjunction with the scattering boundary method (SBM). In Lennard-Jones superlattice junctions with a superlattice period of four atomic monolayers at low temperatures, those with mass-mismatched leads have a greater thermal conductance than those with mass-matched leads. We attribute this lead effect to interference between and the ballistic transport of emergent junction vibrational modes. The lead effect diminishes when the temperature is increased, when the superlattice period is increased, and when interfacial disorder is introduced, and is reversed in the harmonic limit. In graphene-hBN heterostructure junctions, the thermal conductance is dominated by acoustic phonon modes near the Brillouin zone center that have high group velocity, population, and transmission coefficient. Out-of-plane modes make their most significant contributions at low frequencies, whereas in-plane modes contribute across the frequency spectrum. Finite-length superlattice junctions between graphene and hBN leads have a lower thermal conductance than comparable junctions between two graphene leads due to lack of transmission in the hBN phonon band gap. The thermal conductances of bilayer systems differ by less that 10% from their single-layer counterparts on a per area basis, in contrast to the strong thermal conductivity reduction when moving to from single- to multi-layer graphene. We model C60 molecules using the polymer consistent force-field and compute the single molecule vibrational spectrum and heat capacity. In the face-center cubic C60 molecular crystal at a temperature of 300 K, we find three frequency peaks in the center-of-mass translations at 20, 30 and 38 cm􀀀1, agreeing with the average frequencies of the three acoustic branches of the frozen phonon model of the same system and suggesting that a phonon description of center-of-mass translations. We use both direct method and Green- Kubo MD simulations to predict the thermal conductivity of the molecular crystals at a temperature of 300 K. We find that the thermal conductivity of the molecular crystal is 20 to 50% lower than that of a reduced order model where only molecular center-ofmass translations are present, suggesting that molecular vibrations and rotations act as significant scattering sources for the center-of-mass phonons.
4

Investigation of Self-Assembly and Thermal Transport in Multifarious Colloidal Constructs

Stahley, James Brian 04 October 2021 (has links)
No description available.
5

Thermal and Electrical Transport Study on Thermoelectric Materials Through Nanostructuring and Magnetic Field

Yao, Mengliang January 2017 (has links)
Thesis advisor: Cyril P. Opeil / Thermoelectric (TE) materials are of great interest to contemporary scientists because of their ability to directly convert temperature differences into electricity, and are regarded as a promising mode of alternative energy. The TE conversion efficiency is determined by the Carnot efficiency, η_C and is relevant to a commonly used figure of merit ZT of a material. Improving the value of ZT is presently a core mission within the TE field. In order to advance our understanding of thermoelectric materials and improve their efficiency, this dissertation investigates the low-temperature behavior of the p-type thermoelectric Cu2Se through chemical doping and nanostructuring. It demonstrates a method to separate the electronic and lattice thermal conductivities in single crystal Bi2Te3, Cu, Al, Zn, and probes the electrical transport of quasi 2D bismuth textured thin films. Cu2Se is a good high temperature TE material due to its phonon-liquid electron-crystal (PLEC) properties. It shows a discontinuity in transport coefficients and ZT around a structural transition. The present work on Cu2Se at low temperatures shows that it is a promising p-type TE material in the low temperature regime and investigates the Peierls transition and charge-density wave (CDW) response to doping [1]. After entering the CDW ground state, an oscillation (wave-like fluctuation) was observed in the dc I-V curve near 50 K; this exhibits a periodic negative differential resistivity in an applied electric field due to the current. An investigation into the doping effect of Zn, Ni, and Te on the CDW ground state shows that Zn and Ni-doped Cu2Se produces an increased semiconducting energy gap and electron-phonon coupling constant, while the Te doping suppresses the Peierls transition. A similar fluctuating wave-like dc I-V curve was observed in Cu1.98Zn0.02Se near 40 K. This oscillatory behavior in the dc I-V curve was found to be insensitive to magnetic field but temperature dependent [2]. Understanding reducing thermal conductivity in TE materials is an important facet of increasing TE efficiency and potential applications. In this dissertation, a magnetothermal (MTR) resistance method is used to measure the lattice thermal conductivity, κ_ph of single crystal Bi2Te3 from 5 to 60 K. A large transverse magnetic field is applied to suppress the electronic thermal conduction while measuring thermal conductivity and electrical resistivity. The lattice thermal conductivity is then calculated by extrapolating the thermal conductivity versus electrical conductivity curve to a zero electrical conductivity value. The results show that the measured phonon thermal conductivity follows the e^(Δ_min⁄T) temperature dependence and the Lorenz ratio corresponds to the modified Sommerfeld value in the intermediate temperature range. These low-temperature experimental data and analysis on Bi2Te3 are important compliments to previous measurements and theoretical calculations at higher temperatures, 100 – 300 K. The MTR method on Bi2Te3 provides data necessary for first-principles calculations [4]. A parallel study on single crystal Cu, Al and Zn shows the applicability of the MTR method for separating κ_e and κ_ph in metals and indicates a significant deviation of the Lorenz ratio between 5 K and 60 K [3]. Elemental bismuth is a component of many TE compounds and in this dissertation magnetoresistance measurements are used investigate the effect of texturing in polycrystalline bismuth thin films. Electrical current in bismuth films with texturing such that all grains are oriented with the trigonal axis normal to the film plane is found to flow in an isotropic manner. By contrast, bismuth films with no texture such that not all grains have the same crystallographic orientation exhibit anisotropic current flow, giving rise to preferential current flow pathways in each grain depending on its orientation. Textured and non-textured bismuth thin films are examined by measuring their angle-dependent magnetoresistance at different temperatures (3 – 300 K) and applied magnetic fields (0 – 90 kOe). Experimental evidence shows that the anisotropic conduction is due to the large mass anisotropy of bismuth and is confirmed by a parallel study on an antimony thin film [5]. [1] Mengliang Yao, Weishu Liu, Xiang Chen, Zhensong Ren, Stephen Wilson, Zhifeng Ren, and Cyril Opeil, J. Alloys Compd. 699, 718 (2017). [2] Mengliang Yao, Weishu Liu, Xiang Chen, Zhensong Ren, Stephen Wilson, Zhifeng Ren, and Cyril P. Opeil, J. Materiomics 3, 150 (2017). [3] Experimental determination of phonon thermal conductivity and Lorenz ratio of single crystal metals: Al, Cu and Zn, Mengliang Yao, Mona Zebarjadi, and Cyril P. Opeil, under review. [4] Experimental determination of phonon thermal conductivity and Lorenz ratio of single crystal bismuth telluride, Mengliang Yao, Stephen Wilson, Mona Zebarjadi, and Cyril Opeil, under review. [5] Albert D. Liao, Mengliang Yao, Ferhat Katmis, Mingda Li, Shuang Tang, Jagadeesh S. Moodera, Cyril Opeil, Mildred S. Dresselhaus, Appl. Phys. Lett. 105, 063114 (2014). / Thesis (PhD) — Boston College, 2017. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Physics.
6

Effect of phonon interference on the thermal conductivity and heat carriers / Effets d'interférences des phonons sur la conductivité thermique et les porteurs de chaleur

Han, Haoxue 19 October 2015 (has links)
L'interférence des ondes de phonon peut modifier le spectre de phonon et ainsi la vitesse de groupe et la population de phonon. Ces interférences permettent de manipuler le flux d'énergie thermique en contrôlant la conductivité thermique et en utilisant les miroirs pour réfléchir les phonons. L'application technologique d'interférence de phonons dans les matériaux, par exemple la conversion renforcée thermoélectrique d'énergie et l'isolation améliorée thermique, a propulsé l'exploration des matériaux avec les interférences de phonons plus efficace.Dans un premier temps, nous proposons une nouvelle approche pour démontrer que la chaleur dans les solides peut être manipuler comme la lumière. Nous contrôlons avec précision le flux thermique par un métamatériau à l'échelle atomique qui comporte des défauts dans le réseau cristallin. L'interférence destructive entre les ondes de chaleur en suivant différents chemins mène à la réflexion totale de phonon et à une réduction remarquable de la conductance thermique. En exploitant cette interférence, nous modélisons une possibilité contre-intuitif de transport thermique: plus de chaleur est bloquée par l'ouverture des chaînes additionnelles de phonon. Le métamateriau thermique est un bon candidat de miroir atomique thermique de haute finesse. Nous renforçons la compréhension sur le contrôle cohérente des phonons qui peuvent être appliquée à la fois au son et à la propagation de chaleur.Dans un deuxième temps, nous introduisons un nano condensateur ultra-compacte de phonons cohérents formé par les miroirs d'interférence de haute finesse basée sur le métamatériau semi-conducteur à l'échelle atomique.Nos simulations de dynamique moléculaire montrent que le nano condensateur stocke les ondes monochromatiques térahertz, qui peuvent être utilisés pour un laser de phonon - l'émission de phonons cohérents. Un laser de phonon soit d'une ou de deux couleurs peut être réalisé en fonction de la géométrie du nano dispositif. Le stockage des phonons cohérents peut être réalisé par le refroidissement de la nano condensateur initialement thermalisé à la température ambiante ou par la technique pump-sonde. Le rétrécissement de la largeur de raie et de le nombre relatif de participation de phonon confirme un confinement dans la nanocavité par une quantité extrêmement faible de défauts de résonance. L'émission des faisceaux acoustiques cohérents en térahertz de la nano condensateur peuvent être réalisés en appliquant une contrainte réversible accordable qui décale les fréquences d'antirésonance.Enfin, nous étudions l'effet d'interférences destructrice de phonon à deux-chemin induite par les forces interatomiques de longue portée sur la conductance thermique et la conductivité d'un alliage silicium-germanium par des calculs atomiques. La conductance thermique à travers un plan atomique de germanium dans le réseau de silicium est sensiblement réduit par l'interférence destructrice du chemin de phonon entre les voisins les plus proches avec l'interaction directe contournant les atomes de défauts. Une réduction quintuple dans la conductivité thermique dans un alliage SiGe à la température ambiante a été observée en introduisant les forces de longue portée. Nous démontrons le rôle prédominant des interférences de phonons harmoniques régissant la conductivité thermique de matières solides en supprimant la diffusion inélastique de phonon à basse température. De telles interférences fournissent un mécanisme résistif harmonique pour contrôler la conduction de chaleur à travers les comportements cohérents de phonons dans les solides. / Wave interference of phonons can modify the phonon spectrum and thereby the group velocity and phonon population. These wave interferences allow the flow of thermal energy to be manipulated by controlling the materials lattice thermal conductivity and using thermal mirrors to reflect thermal phonons.The technological application of the phonon interference in materials, such as enhanced thermoelectric energy conversion and improved thermal insulation,has thrusted the exploration for highly efficient wave interference materials. First, we provide a new approach to demonstrate that heat in solids can be manipulated like light. We precisely control the heat flow by the atomic-scale phononic metamaterial, which contains deliberate flaws in the crystalline atomic lattice,channeling the heat through different phonon paths. Destructive interference between heat waves following different paths leads to the total reflection of the heat current and thus to the remarkable reduction in the material ability to conduct heat. By exploiting this destructive phonon interference, we model a very counter-intuitive possibility of thermal transport: more heat flow is blocked by the opening of the additional phonon channels. Our thermal metamaterial is a good candidate for high-fi nesse atomic-scale heat mirrors. We provide an important further insight into the coherent control of phonons which can be applied both to sound and heat propagation.Secondly, we introduce a novel ultra-compact nanocapacitor of coherent phonons formed by high-finesse interference mirrors based on atomic-scale semiconducto rmetamaterials. Our molecular dynamics simulations show that the nanocapacitor stores monochromatic terahertz lattice waves, which can be used for phonon lasing - the emission of coherent phonons. Either one- or two-color phonon lasing can be realized depending on the geometry of the nanodevice. The two-color regime of the interference cavity originates from different incidence-angle dependence of phonon wave packet transmission for two wave polarizations at the respective antiresonances. Coherent phonon storage can be achieved by cooling the nanocapacitor initially thermalized at room temperature or by the pump-probe technique. The line width narrowing and the computed relative phonon participation number confirm strong phonon confinement in the interference cavity by an extremely small amount of resonance defects. The emission of coherent terahertz acoustic beams from the nanocapacitor can be realized by applying tunable reversible stress which shifts the antiresonance frequencies.Finally, we investigate the role of two-path destructive phonon interference induced by long-range interatomic forces on the thermal conductance and conductivityof a silicon-germanium alloy by atomistic calculations. The thermal conductance across a germanium atomic plane in the silicon lattice is substantially reduced by the destructive interference of the nearest-neighbour phononpath with a direct path bypassing the defect atoms. Such an interference causes a fivefold reduction in the lattice thermal conductivity in a SiGe alloy at room temperature. We demonstrate the predominant role of harmonic phonon interferences in governing the thermal conductivity of solids by suppressing the inelastic scattering processes at low temperature. Such interferences provide a harmonic resistive mechanism to explain and control heat conduction through the coherent behaviours of phonons in solids.
7

Molecular Level Assessment of Thermal Transport and Thermoelectricity in Materials: From Bulk Alloys to Nanostructures

Kinaci, Alper 03 October 2013 (has links)
The ability to manipulate material response to dynamical processes depends on the extent of understanding of transport properties and their variation with chemical and structural features in materials. In this perspective, current work focuses on the thermal and electronic transport behavior of technologically important bulk and nanomaterials. Strontium titanate is a potential thermoelectric material due to its large Seebeck coefficient. Here, first principles electronic band structure and Boltzmann transport calculations are employed in studying the thermoelectric properties of this material in doped and deformed states. The calculations verified that excessive carrier concentrations are needed for this material to be used in thermoelectric applications. Carbon- and boron nitride-based nanomaterials also offer new opportunities in many applications from thermoelectrics to fast heat removers. For these materials, molecular dynamics calculations are used to evaluate lattice thermal transport. To do this, first, an energy moment term is reformulated for periodic boundary conditions and tested to calculate thermal conductivity from Einstein relation in various systems. The influences of the structural details (size, dimensionality) and defects (vacancies, Stone-Wales defects, edge roughness, isotopic disorder) on the thermal conductivity of C and BN nanostructures are explored. It is observed that single vacancies scatter phonons stronger than other type of defects due to unsatisfied bonds in their structure. In pristine states, BN nanostructures have 4-6 times lower thermal conductivity compared to C counterparts. The reason of this observation is investigated on the basis of phonon group velocities, life times and heat capacities. The calculations show that both phonon group velocities and life times are smaller in BN systems. Quantum corrections are also discussed for these classical simulations. The chemical and structural diversity that could be attained by mixing hexagonal boron nitride and graphene provide further avenues for tuning thermal and electronic properties. In this work, the thermal conductivity of hybrid graphene/hexagonal-BN structures: stripe superlattices and BN (graphene) dots embedded in graphene (BN) are studied. The largest reduction in thermal conductivity is observed at 50% chemical mixture in dot superlattices. The dot radius appears to have little effect on the magnitude of reduction around large concentrations while smaller dots are more influential at dilute systems.
8

Thermal Transport at Superhydrophobic Surfaces in Impinging Liquid Jets, Natural Convection, and Pool Boiling

Searle, Matthew Clark 01 September 2018 (has links)
This dissertation focuses on the effects of superhydrophobic (SHPo) surfaces on thermal transport. The work is divided into two main categories: thermal transport without phase change and thermal transport with phase change. Thermal transport without phase change is the topic of four stand-alone chapters. Three address jet impingement at SHPo surfaces and the fourth considers natural convection at a vertical, SHPo wall. Thermal transport with phase change is the topic of a single stand-alone chapter exploring pool boiling at SHPo surfaces.Two chapters examining jet impingement present analytical models for thermal transport; one considered an isothermal wall and the other considered an isoflux wall. The chapter considering the isothermal scenario has been archivally published. Conclusions are presented for both models. The models indicated that the Nusselt number decreased dramatically as the temperature jump length increased. Further, the influence of radial position, jet Reynolds number, Prandtl number and isoflux versus isothermal heating become negligible as temperature jump length increased. The final chapter concerning jet impingement reports an experimental exploration of jet impingement at post patterned SHPo surfaces with varying microfeature pitch and cavity fraction. The empirical results show a decrease in Nusselt number relative to smooth hydrophobic surfaces for small pitch and cavity fraction and the isoflux model agrees well with this data when the ratio of temperature jump length to slip length is 3.1. At larger pitch and cavity fractions, the empirical results have higher Nusselt numbers than the SHPo surfaces with small pitch and cavity fraction but remain smaller than the smooth hydrophobic surface. We attribute this to the influence of small wetting regions. The chapter addressing natural convection presents an analytical model for buoyant flow at a vertical SHPo surface. The Nusselt number decreased dramatically as temperature jump length increased, with greater decrease occurring near the lower edge and at higher Rayleigh number. Thermal transport with phase change is the topic of the final stand-alone chapter concerning pool boiling, which has been archivally published. Surface heat flux as a function of surface superheat was reported for SHPo surfaces with rib and post patterning at varying microfeature pitch, cavity fraction, and microfeature height. Nucleate boiling is more suppressed on post patterned surfaces than rib patterned surfaces. At rib patterned surfaces, transition superheat decreases as cavity fraction increases. Increasing microfeature height modestly increases the transition superheat. Once stable film boiling is achieved, changes in surface microstructure negligibly influence thermal transport.
9

Facilitation of Nanoscale Thermal Transport by Hydrogen Bonds

Zhang, Lin 01 August 2017 (has links)
Thermal transport performance at the nanoscale and/or of biomaterials is essential to the success of many new technologies including nanoelectronics, biomedical devices, and various nanocomposites. Due to complicated microstructures and chemical bonding, thermal transport process in these materials has not been well understood yet. In terms of chemical bonding, it is well known that the strength of atomic bonding can significantly affect thermal transport across materials or across interfaces between materials. Given the intrinsic high strength of hydrogen bonds, this dissertation explores the role of hydrogen bonds in nanoscale thermal transport in various materials, and investigates novel material designs incorporating hydrogen bonds for drastically enhanced thermal conduction. Molecular dynamics simulation is employed to study thermal transport processes in three representative hydrogen-bonded materials: (1) crystalline motifs of the spider silk, silkworm silk and synthetic silk, (2) crystalline polymer nanofibers, and (3) polymer nanocomposites incorporating graphene or functionalized graphene. Computational and theoretical investigations demonstrate that hydrogen bonds significantly facilitate thermal transport in all three material systems. The underlying molecular mechanisms are systematically investigated. The results will not only contribute new physical insights, but also provide novel concepts of materials design to improve thermal properties towards a wide range of applications.
10

First-principles predictions of high-order and nonequilibrium phonon thermal transport

Zherui Han (18419112) 21 April 2024 (has links)
<p dir="ltr">First-principles method is a powerful approach to study atomic scale physics. With its introduction into thermal transport community, the \textit{ab initio} description of quantized lattice vibrations, phonons, achieved great success in predicting thermal transport properties in the past decade. Though such method is well established, recent theoretical and experimental efforts uncovered new physics and raised new challenges to our community. In particular, high-order phonon anharmonicity, which was assumed to be negligible, shows great impact on thermal transport. Highly nonequilibrium electron and phonon transport occurs in emerging materials with nonuniform temperature field and the equilibrium assumption is no longer valid. Finite temperature effect is found to change the potential landscape even in systems that are quite harmonic, and the previous quasi-harmonic approximation fails. These physical understandings are also closely related to applications that are being extensively studied today: high thermal conductivity materials in thermal management, hot electrons phenomenon in thermal photovoltaic, high temperature radiative properties in thermal barrier coatings, etc.</p><p><br></p><p dir="ltr">In this Dissertation, we seek to establish new physical understanding in thermal transport by studying four-phonon scattering, phonon nonequilibrium behavior, phonon renormalization scheme and their interplay in a wide range of solid state systems. For the benefit of the community, we develop an efficient open-source computational program, \textsc{FourPhonon}, and keep updating its core features to drive sustained scientific innovations. This program is capable of calculating phonon-phonon scattering rates up to the fourth-order and the lattice thermal conductivity of solids ($\kappa$).</p><p><br></p><p dir="ltr">The Raman peak position and linewidth provide insight into phonon anharmonicity and electron-phonon interactions in materials. For monolayer graphene, prior first-principles calculations have yielded decreasing linewidth with increasing temperature, which is opposite to measurement results. Here, we explicitly consider four-phonon anharmonicity, phonon renormalization, and electron-phonon coupling, and find all to be important to successfully explain both the $G$ peak frequency shift and linewidths in suspended graphene sample over a wide temperature range. Four-phonon scattering contributes a prominent linewidth that increases with temperature, while temperature dependence from electron-phonon interactions is found to be reversed above a doping threshold ($\hbar\omega_G/2$, with $\omega_G$ being the frequency of the $G$ phonon).</p><p><br></p><p dir="ltr">While the Raman spectra concerns one particular optical phonon mode, we move to consider $\kappa$ that is determined by full phonon spectrum. The thermal conductivity of monolayer graphene is widely believed to surpass that of diamond even for few-micron size samples and was proposed to diverge with system size. Here, we predict the thermal conductivity from first principles by considering four-phonon scattering, phonon renormalization, an exact solution to phonon Boltzmann transport equation (PBTE), and an unprecedented sampling grid. We show that at room temperature the thermal conductivity saturates at 10~$\rm\upmu m$ size and above and converges to 1300~W/(m$\cdot$K), which is lower than that of diamond. This indicates that four-phonon scattering overall contributes 57\% to the total thermal resistance and becomes the leading phonon scattering mechanism over three-phonon scattering. On the contrary, considering three-phonon scattering only yields higher-than-diamond values and divergence with size due to the momentum-conserving normal processes of flexural phonons.</p><p><br></p><p dir="ltr">Higher-order phonon scattering affects heat conduction and thermal radiation at high temperature to a larger degree than at room temperature. We establish a computational framework to compute temperature-dependent full spectrum optical properties and high temperature $\kappa$ of ceramics materials. From ultraviolet to mid-infrared region, light-matter interaction mechanisms in semiconductors progressively shift from electronic transitions to phononic resonances and are affected by temperature. Here, we present a parallel temperature-dependent treatment of both electrons and phonons entirely from first principles, enabling the prediction of full-spectrum optical responses. At elevated temperatures, \textit{ab initio} molecular dynamics (AIMD) is employed to find thermal perturbations to electronic structures and construct effective force constants describing potential landscape. Four-phonon scattering and phonon renormalization are included in an integrated manner in this approach. As a prototype ceramic material, cerium dioxide (CeO$_2$) is considered. Our first-principles calculated refractive index of CeO$_2$ agrees well with measured data from literature and temperature-dependent ellipsometer experiment.</p><p><br></p><p dir="ltr">The lattice thermal conductivity ($\kappa$) of two ceramic materials, CeO$_2$ and magnesium oxide (MgO), is then computed up to 1500~K using first principles and the PBTE with the same level of physics, and compared to time-domain thermoreflectance (TDTR) measurements up to 800~K. Our calculated thermal conductivities from the PBTE agree well with literature and our TDTR measurements. Other predicted thermal properties including thermal expansion, frequency shift, and phonon linewidth also compare well with available experimental data. Our results show that high temperature softens phonon frequency and reduces four-phonon scattering strength in both ceramics. The temperature scaling law of $\kappa$ is $\sim T^{-1}$ for three-phonon scattering only and remains the same after phonon renormalization. This scaling for three- plus four-phonon scattering is $\sim T^{-1.2}$ but is weakened to $\sim T^{-1}$ by phonon renormalization. This indicates that four-phonon scattering can play an important role in systems where measured $\kappa$ decays with temperature as $\sim T^{-1}$, which was conventionally attributed to three-phonon only. Compared to MgO, we find that CeO$_2$ has weaker four-phonon effect and renormalization greatly reduces its four-phonon scattering rates.</p><p> </p><p dir="ltr">Phonon-phonon scattering, together with electron-phonon coupling, can often show strong selectivity and drive system out of thermal equilibrium. Measurements and a previous multitemperature model (MTM) resolving phonon temperatures at the polarization level have uncovered remarkable nonequilibrium among different phonon polarizations in laser irradiated graphene and metals. Here, we develop a semiconductor-specific MTM (SC-MTM) by including electron-hole pair generation, diffusion, and recombination, and show that a conventional phonon polarization-level model does not yield observable polarization-based nonequilibrium in laser-irradiated molybdenum disulfide (MoS$_2$). In contrast, appreciable nonequilibrium is predicted between zone-center optical phonons and the other modes. The momentum-based nonequilibrium ratio is found to increase with decreasing laser spot size and interaction with a substrate. This finding is relevant to the understanding of the energy relaxation process in two-dimensional optoelectronic devices and Raman measurements of thermal transport. </p><p><br></p><p dir="ltr">In summary, this Dissertation leverages first-principles method to explore thermal transport in emerging materials with a focus on high-order phonon scattering, phonon nonequilibrium behavior, and phonon renormalization. We reveal the importance of these effects in various phenomena including thermal conductivity, optical properties, Raman thermometry and thermal radiation control. </p>

Page generated in 0.0971 seconds