Spelling suggestions: "subject:"thermalaware"" "subject:"thermalbalance""
1 |
Power and Thermal Aware Scheduling for Real-time Computing SystemsHuang, Huang 09 March 2012 (has links)
Over the past few decades, we have been enjoying tremendous benefits thanks to the revolutionary advancement of computing systems, driven mainly by the remarkable semiconductor technology scaling and the increasingly complicated processor architecture. However, the exponentially increased transistor density has directly led to exponentially increased power consumption and dramatically elevated system temperature, which not only adversely impacts the system's cost, performance and reliability, but also increases the leakage and thus the overall power consumption. Today, the power and thermal issues have posed enormous challenges and threaten to slow down the continuous evolvement of computer technology. Effective power/thermal-aware design techniques are urgently demanded, at all design abstraction levels, from the circuit-level, the logic-level, to the architectural-level and the system-level.
In this dissertation, we present our research efforts to employ real-time scheduling techniques to solve the resource-constrained power/thermal-aware, design-optimization problems. In our research, we developed a set of simple yet accurate system-level models to capture the processor's thermal dynamic as well as the interdependency of leakage power consumption, temperature, and supply voltage. Based on these models, we investigated the fundamental principles in power/thermal-aware scheduling, and developed real-time scheduling techniques targeting at a variety of design objectives, including peak temperature minimization, overall energy reduction, and performance maximization.
The novelty of this work is that we integrate the cutting-edge research on power and thermal at the circuit and architectural-level into a set of accurate yet simplified system-level models, and are able to conduct system-level analysis and design based on these models. The theoretical study in this work serves as a solid foundation for the guidance of the power/thermal-aware scheduling algorithms development in practical computing systems.
|
2 |
Practical Dynamic Thermal Management on Intel Desktop ComputerLiu, Guanglei 12 July 2012 (has links)
Fueled by increasing human appetite for high computing performance, semiconductor technology has now marched into the deep sub-micron era. As transistor size keeps shrinking, more and more transistors are integrated into a single chip. This has increased tremendously the power consumption and heat generation of IC chips. The rapidly growing heat dissipation greatly increases the packaging/cooling costs, and adversely affects the performance and reliability of a computing system. In addition, it also reduces the processor's life span and may even crash the entire computing system. Therefore, dynamic thermal management (DTM) is becoming a critical problem in modern computer system design.
Extensive theoretical research has been conducted to study the DTM problem. However, most of them are based on theoretically idealized assumptions or simplified models. While these models and assumptions help to greatly simplify a complex problem and make it theoretically manageable, practical computer systems and applications must deal with many practical factors and details beyond these models or assumptions.
The goal of our research was to develop a test platform that can be used to validate theoretical results on DTM under well-controlled conditions, to identify the limitations of existing theoretical results, and also to develop new and practical DTM techniques. This dissertation details the background and our research efforts in this endeavor. Specifically, in our research, we first developed a customized test platform based on an Intel desktop. We then tested a number of related theoretical works and examined their limitations under the practical hardware environment. With these limitations in mind, we developed a new reactive thermal management algorithm for single-core computing systems to optimize the throughput under a peak temperature constraint. We further extended our research to a multicore platform and developed an effective proactive DTM technique for throughput maximization on multicore processor based on task migration and dynamic voltage frequency scaling technique. The significance of our research lies in the fact that our research complements the current extensive theoretical research in dealing with increasingly critical thermal problems and enabling the continuous evolution of high performance computing systems.
|
3 |
Leakage Temperature Dependency Aware Real-Time Scheduling for Power and Thermal OptimizationChaturvedi, Vivek 26 March 2013 (has links)
Catering to society’s demand for high performance computing, billions of transistors are now integrated on IC chips to deliver unprecedented performances. With increasing transistor density, the power consumption/density is growing exponentially. The increasing power consumption directly translates to the high chip temperature, which not only raises the packaging/cooling costs, but also degrades the performance/reliability and life span of the computing systems. Moreover, high chip temperature also greatly increases the leakage power consumption, which is becoming more and more significant with the continuous scaling of the transistor size. As the semiconductor industry continues to evolve, power and thermal challenges have become the most critical challenges in the design of new generations of computing systems.
In this dissertation, we addressed the power/thermal issues from the system-level perspective. Specifically, we sought to employ real-time scheduling methods to optimize the power/thermal efficiency of the real-time computing systems, with leakage/ temperature dependency taken into consideration. In our research, we first explored the fundamental principles on how to employ dynamic voltage scaling (DVS) techniques to reduce the peak operating temperature when running a real-time application on a single core platform. We further proposed a novel real-time scheduling method, “M-Oscillations” to reduce the peak temperature when scheduling a hard real-time periodic task set. We also developed three checking methods to guarantee the feasibility of a periodic real-time schedule under peak temperature constraint. We further extended our research from single core platform to multi-core platform. We investigated the energy estimation problem on the multi-core platforms and developed a light weight and accurate method to calculate the energy consumption for a given voltage schedule on a multi-core platform. Finally, we concluded the dissertation with elaborated discussions of future extensions of our research.
|
4 |
Combinatorial Optimization for Data Center Operational Cost ReductionRostami, Somayye January 2023 (has links)
This thesis considers two kinds of problems, motivated by practical applications in
data center operations and maintenance. Data centers are the brain of the internet,
each hosting as many as tens of thousands of IT devices, making them a considerable global energy consumption contributor (more than 1 percent of global power
consumption). There is a large body of work at different layers aimed at reducing
the total power consumption for data centers. One of the key places to save power
is addressing the thermal heterogeneity in data centers by thermal-aware workload
distribution. The corresponding optimization problem is challenging due to its combinatorial nature and the computational complexity of thermal models. In this thesis,
a holistic theoretical approach is proposed for thermal-aware workload distribution
which uses linearization to make the problem model-independent and easier to study.
Two general optimization problems are defined. In the first problem, several cooling
parameters and heat recirculation effects are considered, where two red-line temperatures are defined for idle and fully utilized servers to allow the cooling effort to be
reduced. The resulting problem is a mixed integer linear programming problem which
is solved approximately using a proposed heuristic. Numerical results confirm that
the proposed approach outperforms commonly considered baseline algorithms and commercial solvers (MATLAB) and can reduce the power consumption by more than
10 percent. In the next problem, additional operational costs related to reliability
of the servers are considered. The resulting problem is solved by a generalization of
the proposed heuristics integrated with a Model Predictive Control (MPC) approach,
where demand predictions are available. Finally, in the second type of problems,
we address a problem in inventory management related to data center maintenance,
where we develop an efficient dynamic programming algorithm to solve a lot-sizing
problem. The algorithm is based on a key structural property that may be of more
general interest, that of a just-in-time ordering policy. / Thesis / Doctor of Philosophy (PhD) / Data centers, each hosting as many as tens of thousands of IT devices, contribute to a
considerable portion of energy usage worldwide (more than 1 percent of global power
consumption). They also encounter other operational costs mostly related to reliability of devices and maintenance. One of the key places to reduce energy consumption is
through addressing the thermal heterogeneity in data centers by thermal-aware work load distribution for the servers. This prevents hot spot generation and addresses the
trade-off between IT and cooling power consumption, the two main power consump tion contributors. The corresponding optimization problem is challenging due to its
combinatorial nature and the complexity of thermal models. In this thesis, we present
a holistic approach for thermal-aware workload distribution in data centers, using lin earization to make the problem model-independent and simpler to study. Two quite
general nonlinear optimization problems are defined. The results confirm that the
proposed approach completed by a proposed heuristic solves the problems efficiently
and with high precision. Finally, we address a problem in inventory management
related to data center maintenance, where we develop an efficient algorithm to solve
a lot-sizing problem that has a goal of reducing data center operational costs.
|
Page generated in 0.0374 seconds