• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3512
  • 2061
  • 826
  • 688
  • 559
  • 170
  • 124
  • 103
  • 82
  • 62
  • 59
  • 37
  • 37
  • 37
  • 37
  • Tagged with
  • 10277
  • 1557
  • 1370
  • 1254
  • 1167
  • 1108
  • 905
  • 825
  • 794
  • 749
  • 745
  • 692
  • 657
  • 613
  • 533
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Economic Evaluation of a Solar Charged Thermal Energy Store for Space Heating

Melo, Manuel January 2013 (has links)
A thermal energy store corrects the misalignment of heating demand in the winter relative to solar thermal energy gathered in the summer. This thesis reviews the viability of a solar charged hot water tank thermal energy store for a school at latitude 56.25N, longitude -120.85W
302

Second Law Performance Analysis of a Large Thermal Energy Storage Vessel using CFD

Rysanek, Adam M. 22 September 2009 (has links)
This work is an example of a CFD-assisted design and characterization process for thermal energy storage vessels. A general modeling technique for future works is also proposed. The Short-Term Thermal Storage (STTS) tanks at the Drake Landing Solar Community (DLSC) were used as the principal case study. The performance characterization of the STTS tanks and the evaluation of other tank designs were made under solar charging conditions and for the STTS “Hot Tank” only. Three sets of simulations were undertaken for each tank design, each representing a different state of inlet conditions reflected in the DLSC’s operational manual. Characterization of the STTS tanks was done mainly by applying a set of 2nd Law characterization indices, both existing and new, using exergy as the primary Figure of Merit. It was evident that significant mixing occurs in the current STTS tanks due to the ineffective placement of the inlet ports and the lack of an appropriate flow diffuser to prevent mixing. For example, at the end of the simulations exhibiting constant inlet temperature and flow rate, the total exergy in the original STTS tank was only 68% of a perfectly-stratified vessel. A modified design of the STTS tanks, which only shifted the position of the inlet port and center baffle, significantly improved this value to over 90%. Additional analysis also indicated that the STTS tanks would benefit from a simple flow distributor or inlet manifold that would address stratification issues inherent to variable temperature inlet conditions. However, further analysis on this particular design configuration is needed. The characterization methods employed in this work represent an effective means to differentiate between the stratification effectiveness of various thermal storage vessel designs. This work would further benefit from a future study that compares changes to the STTS tanks’ stratification efficiency with changes to the DLSC’s overall performance, including a cost-benefit analysis. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2009-09-18 05:50:58.362
303

Thermal Diffusivity Measurement of Thin Thermal-sprayed Coatings

Duan, Linlin Unknown Date
No description available.
304

Life prediction evaluation and damage mechanism identification for SCS-6/Timetal 21S composites subjected to thermomechanical fatigue

Calcaterra, Jeffrey Ronald 12 1900 (has links)
No description available.
305

Thermal effects on subsurface damage during the surface grinding of titanium aluminide

Stone, Wesley Lloyd 05 1900 (has links)
No description available.
306

High speed electrical power takeoff for oscillating water columns

Hodgins, Neil January 2010 (has links)
This thesis describes research into electrical power takeoff mechanisms for Oscillating Water Column (OWC) wave energy devices. The OWC application is studied and possible alternatives to the existing Induction Generator (IG) are identified. The Permanent Magnet Generator (PMG) is found to be the most promising. Results showed that the IG could almost match the output of the PMG if it could be operated significantly above its rated capacity. This improvement would require only limited changes to the overall OWC system. The ability to operate overloaded is determined by the losses and cooling of the IG. The losses in a suitable IG were measured in tests at Nottingham University. Steady state measurements were made of the cooling ability of the OWC airflow at the LIMPET wave power plant operated by Wavegen (the sponsor company) on Islay. Thermal modelling combining the loss and cooling measurements allowed the maximum capacity of the induction generator in an OWC to be found. A simplified model that accurately represents this system is proposed for use in system design and generator control.
307

Experimental Measurements of LiFePO4 Battery Thermal Characteristics

Mathewson, Scott January 2014 (has links)
A major challenge in the development of next generation electric and hybrid vehicle technology is the control and management of heat generation and operating temperatures. Vehicle performance, reliability and ultimately consumer market adoption are integrally dependent on successful battery thermal management designs. It will be shown that in the absence of active cooling, surface temperatures of operating lithium-ion batteries can reach as high as 50 °C, within 5 °C of the maximum safe operating temperature. Even in the presence of active cooling, surface temperatures greater than 45 °C are attainable. It is thus of paramount importance to electric vehicle and battery thermal management designers to quantify the effect of temperature and discharge rate on heat generation, energy output, and temperature response of operating lithium-ion batteries. This work presents a purely experimental thermal characterization of thermo-physical properties and operating behavior of a lithium-ion battery utilizing a promising electrode material, LiFePO4, in a prismatic pouch configuration. Crucial to thermal modeling is accurate thermo-physical property input. Thermal resistance measurements were made using specially constructed battery samples. The thru-plane thermal conductivity of LiFePO4 positive electrode and negative electrode materials was found to be 1.79 ± 0.18 W/m°C and 1.17 ± 0.12 W/m°C respectively. The emissivity of the outer pouch was evaluated to enable accurate IR temperature detection and found to be 0.86. Charge-discharge testing was performed to enable thermal management design solutions. Heat generated by the battery along with surface temperature and heat flux at distributed locations was measured using a purpose built apparatus containing cold plates supplied by a controlled cooling system. Heat flux measurements were consistently recorded at values approximately 400% higher at locations near the external tabs compared to measurements taken a relatively short distance down the battery surface. The highest heat flux recorded was 3112 W/m2 near the negative electrode during a 4C discharge at 5 °C operating temperature. Total heat generated during a 4C discharge nearly doubled when operating temperature was decreased from 35 °C to 5 °C, illustrating a strong dependence of heat generation mechanisms on temperature. Peak heat generation rates followed the same trend and the maximum rate of 90.7 W occurred near the end of 5 °C, 4C discharge rate operation. As a result, the maximum value of total heat generated was 41.34 kJ during the same discharge conditions. The effect of increasing discharge rate from 1C to 4C caused heat generation to double for all operating temperatures due to the increased ohmic heating. Heat generation was highest where the thermal gradient was largest. The largest gradient, near negative electrode current collector to external tab connection and was evaluated using IR thermography to be 0.632 °C/mm during 4C discharge with passive room temperature natural convection air cooling. Battery designs should utilize a greater connection thickness to minimize both electrical resistance and current density which both drive the dominant mode of heat generation, ohmic heating. Otherwise cooling solutions should be concentrated on this region to minimize the temperature gradient on the battery.
308

Thermal and fracture behaviour of rocket motor materials / by Kim Martin Ide.

Ide, Kym Martin January 1997 (has links)
Bibliography: leaves 190-196. / vi, 197 leaves : ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / This thesis analyses the way in which ageing, temperature and strain-rate affect the thermal and fracture properties of the polymeric components in the PICTOR rocket motor. The change in the thermal expansion behaviour of the propellant, inhibitor, epoxy and insulation is investigated. / Thesis (Ph.D.)--University of Adelaide, Dept. of Chemical Engineering, 1997?
309

Investigating the source of thermal anomalies in the northern United Arab Emirates (UAE) desert using geophysical methods

Ahmad, Khalid, January 2010 (has links) (PDF)
Thesis (Ph. D.)--Missouri University of Science and Technology, 2010. / Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed June 30, 2010) Includes bibliographical references (p. 129-135).
310

Microcrystalline Cellulose-Filled Engineering Thermoplastic Composites

Kiziltas, Alper January 2009 (has links) (PDF)
No description available.

Page generated in 0.0912 seconds