• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3512
  • 2061
  • 826
  • 688
  • 559
  • 170
  • 124
  • 103
  • 82
  • 62
  • 59
  • 37
  • 37
  • 37
  • 37
  • Tagged with
  • 10277
  • 1557
  • 1370
  • 1254
  • 1167
  • 1108
  • 905
  • 825
  • 794
  • 749
  • 745
  • 692
  • 657
  • 613
  • 533
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
371

Hot effective actions

Galan-Gonzalez, Victor January 1999 (has links)
No description available.
372

Chemical phosphorus removal and its influence on sewage sludge particulates and metal availability

Knight, Jonathan James January 2000 (has links)
No description available.
373

Mechanism of flame retardancy of polyamides containing magnesium hydroxide

Wang, Jian January 1994 (has links)
No description available.
374

Contact metamorphism as a model for burial maturation

Bishop, Andrew Nicholas January 1992 (has links)
No description available.
375

Thermophysical properties of elastomers

Migwi, Charles Maina January 1994 (has links)
No description available.
376

Heat and momentum transfer in porous material used for thermal energy storage

Abou-Ziyan, H. Z. Z. January 1988 (has links)
No description available.
377

Investigation and analysis of testing and modelling strategies for epoxy resin impregnated paper (ERIP) high voltage bushings

Pritchard, Leonard Scott January 2000 (has links)
No description available.
378

Investigation of thermal spring back of a hot formed 22MnB5 A-pillar with tailored properties

Lugnberg, Mattias, Netz, Tobias January 2016 (has links)
In a world where fuel economy and crash safety is becoming an important factor in the automotive industry, the need for materials with very high strength-to-weight ratio is growing rapidly. One of the materials used for this purpose is the boron steel 22MnB5. Since the material has very high mechanical yield limit it is hard to produce parts using cold forming, which is the standard procedure for sheet metal forming. Therefore, the use of hot stamping is increasing. Hot stamping enables manufacturing of boron steel parts with good dimensional accuracy and low spring back. However, some amount of spring back is still present during the process. In this thesis, spring back of a hot formed 22MnB5 A-pillar is investigated using computer simulations in the software LS-DYNA. The main focus was to develop a process for simulating spring back in hot stamping. The work started with simulations of the forming and quenching stages of the hot stamping process, both on a full size and on a smaller section of the blank. Simultaneously as the simulations, a literature study was also conducted. The literature study was aimed at finding hints and information on how to build the simulations. Furthermore, interviews were made with experts on both LS-DYNA and hot stamping. A process for spring back evaluation was then created and written as an LS-DYNA keywordfile. In the developed spring back simulation, the part is taken out of the press right after the quenching is finished and placed in a space where it can cool and move freely. The simulation is conducted until the part reaches room temperature. After the quenching is done, data containing temperatures, stresses and strains of the part is exported. This data is then included in the spring back simulation where the part is cooled to room temperature. During the cooling, the stresses, strains and temperatures are equalized until the spring back reaches a steady state. The results indicate that the developed method for spring back evaluation can be used to foresee shape deviations for the intended part and process.
379

ULTRAPRECISE MEASUREMENT OF THERMAL EXPANSION COEFFICIENTS

Bradford, James N. 01 December 1969 (has links)
QC 351 A7 no. 48 / New materials of low thermal expansion are finding wide application. The expansion coefficient (a) is a function of temperature, and this function must be known for each material before its applicability can be assessed. A novel method for determining a, which is at once precise and easily implemented, has been devised. It is based on the dependence of mode frequencies in a Fabry-Perot interferometer on the mirror separation. The expansion sample is formed into an interferometer spacer with ends polished flat and parallel. Spherical mirrors are optically contacted to the ends, forming a confocal interferometer. The assembly is maintained at controlled temperatures in an environmental chamber. The two lowest -order transverse modes are probed by variable -frequency sidebands derived from a 633 -nm He- Ne laser by amplitude modulation. A change in sample temperature AT causes a change in interferometer length AL, which shifts the resonance frequencies by Av. Then a = (1 /AT) (AL /L) _ - (1 /AT)(iv /v). Thus, a can be measured with precision limited ultimately by the stability of the source laser, in practice 1:109 with presently available commercial lasers. For a sample of Owens -Illinois Cer -Vit, a has been measured at 10 temperatures in the range 3.0 to 32.4 °C, with a mean error of 2 x10-9 and a maximum error of 3 x10 -9. For a sample of Corning ULE silica, a has been measured at six temperatures in the same range, with a mean error of <1 x10 -9 and a maximum error of <1.3 x10 -9.
380

Thermal spike model interpretation of sputtering yield data for Bi thin films irradiated by MeV 84Kr15+ ions

Mammeri, S, Ouichaoui, S, Pineda-Vargas, CA, Ammia, H, Dib, A, Msimanga, M 30 October 2010 (has links)
Abstract A modified thermal spike model initially proposed to account for defect formation in metals within the high heavy ion energy regime is adapted for describing the sputtering of Bi thin films under MeV Kr ions. Surface temperature profiles for both the electronic and atomic subsystems have been carefully evaluated versus the radial distance and time with introducing appropriate values of the Bi target electronic stopping power for multi-charged Kr15+ heavy ions as well as different target physical proprieties like specific heats and thermal conductivities. Then, the total sputtering yields of the irradiated Bi thin films have been determined from a spatiotemporal integration of the local atomic evaporation rate. Besides, an expected non negligible contribution of elastic nuclear collisions to the Bi target sputtering yields and ion-induced surface effects has also been considered in our calculation. Finally, the latter thermal spike model allowed us to derive numerical sputtering yields in satisfactorily agreement with existing experimental data both over the low and high heavy ion energy regions, respectively, dominated by elastic nuclear collisions and inelastic electronic collisions, in particular with our data taken recently for Bi thin films irradiated by 27.5 MeV Kr15+ heavy ions. An overall consistency of our model calculation with the predictions of sputtering yield theoretical models within the target nuclear stopping power regime was also pointed out.

Page generated in 0.0641 seconds