• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3512
  • 2061
  • 826
  • 688
  • 559
  • 170
  • 124
  • 103
  • 82
  • 62
  • 59
  • 37
  • 37
  • 37
  • 37
  • Tagged with
  • 10277
  • 1557
  • 1370
  • 1254
  • 1167
  • 1108
  • 905
  • 825
  • 794
  • 749
  • 745
  • 692
  • 657
  • 613
  • 533
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
391

Convesion of industrial compression cooling to absorption cooling in an integrated district heating and cooling system

VILAFRANCA MANGUÁN, ANA January 2009 (has links)
<p>Astra Zeneca plant in Gärtuna has many compression cooling machines for comfort that consume about 11.7 GWh of electricity per year. Many of the cooling machines are old; due to the increase of production of the plant, cooling capacity was limited and new machines have been built. Now, the cooling capacity is over-sized. Söderenergi is the district heating plant that supplies heating to Astra Zeneca plant. Due to the strict environmental policy in the energy plant, last year, a bio-fuelled CHP plant was built. It is awarded with the electricity certificate system.</p><p>The study investigates the possibility for converting some of the compression cooling to absorption cooling and then analyzes the effects of the district heating system through MODEST optimizations. The effects of the analysis are studied in a system composed by the district heating system in Södertälje and cooling system in Astra Zeneca. In the current system the district heating production is from boiler and compression system supplies cooling to Astra Zeneca. The future system includes a CHP plant for the heating production, and compression system is converted to absorption system in Astra Zeneca. Four effects are analyzed in the system: optimal distribution of the district heating production with the plants available, saving fuel, environmental impact and total cost. The environmental impact has been analyzed considering the marginal electricity from coal condensing plants. The total cost is divided in two parts: production cost, in which district heating cost, purchase of electricity and Emissions Trading cost are included, and investment costs. The progressive changes are introduced in the system as four different scenarios.<strong></strong></p><p>The introduction of the absorption machines in the system with the current district heating production increases the total cost due to the low electricity price in Sweden. The introduction of the CHP plant in the district heating production supposes a profit of the production cost with compression system due to the high income of the electricity produced that is sold to the grid; it profit increases when compression is replaced by absorption system. The fuel used in the production of the future system decreases and also the emissions. Then, the future system becomes an opportunity from an environmental and economical point of view. At higher purchase electricity prices predicted in the open electricity market for an immediately future, the future system will become more economically advantageous.</p><p> </p><p> </p>
392

The study of cold leg thermal stratification in APEX-CE

Antoine, Stephanie Y. L. Antoine 30 April 2002 (has links)
This research presents an analysis of thermal stratification in the reactor cold leg of the Advanced Plant Experiment-Combustion Engineering (APEX-CE). This phenomenon may be a precursor leading to a Pressurized Thermal Shock (PTS) event in a nuclear power plant. This work was performed in support of the U.S. Nuclear Regulatory Commission's (USNRC) re-evaluation of its PTS regulations. Using the APEX-CE test facility, thermal stratification was observed for injection flow rates ranging from 30% to 100% and natural circulation flow rates that were generated by core decay powers ranging from 1.5% to 4%, both relative to the scaled Palisades values. A theoretical model was derived to estimate the hot stream entrainment that occurs during cold leg thermal stratification. This model was applied to the Separate Effects Transparent Loop (SETL) facility, a scaled cold leg/downcomer configuration of the APEX-CE plant. The model predictions were in reasonable agreement with the High Pressure Injection (HPI) fluid entrainment data from the Purdue ½ scale facility. The same model was then used to estimate HPI entrainment in SETL. The results proved to be very consistent. Finally, data for the onset of loop seal spillover was obtained using SETL and APEX-CE. A useful flow map, characterizing the onset condition, was generated. / Graduation date: 2002
393

Structural analysis of thermally inactivated nisin

Musafija-Jeknic, Tamara 12 January 1996 (has links)
Nisin, an antimicrobial peptide used in food preservation was evaluated for thermal stability. Nisin retained antimicrobial activity after having been heated at 121��C for seven hours. Anhydrous nisin and concentrated nisin solutions (5-10 mg/ml) were still active after having been heated up to 190��C or 230��C. When exposed to high temperatures of 200 or 250��C for up to one hour, nisin lost all antimicrobial activity. After 3.5 hours of heating at 121��C an inactive nisin degradation product, designated nisin L, was isolated. In comparison to native nisin, nisin L had reduced activity against Pediococcus pentosaceus FBB-61 and no activity against Bacillus cereus T vegetative cells or spores. Structural changes to nisin L were studied by high performance liquid chromatography (HPLC), ion spray mass spectroscopy (MS), ��H nuclear magnetic resonance spectroscopy (NMR) and circular dichroism (CD) spectroscopy and compared to original nisin. There was no difference in molecular weight between nisin and nisin L. Both MS spectra contained nisin, with average molecular weight (MW) of 3354 daltons (D), and hydrated nisin with average molecular weight of 3372 D. Nisin L had higher proportion of hydrated molecules, and it had molecules with more then one water addition. Proton NMR analysis of nisin L indicated that dehydrobutyrine 2 and dehydroalanine 5 residues had been altered, and that several new hydrogen resonances appeared. Water additions in nisin L are likely to have occurred at dehydroresidues, making them inactive. Nisin L was found to be more polar, as would be expected for a more hydrated peptide. Analysis of CD spectra indicated that nisin L had smaller content of a helix and therefore lesser membrane spanning capability. Tandem mass spectroscopy of original nisin revealed that it was hydrated at lysine 34 residue. / Graduation date: 1996
394

Resistance of three freshwater fishes to fluctuating thermal environments /

DeHart, Douglas Alan. January 1974 (has links)
Thesis (M.S.)--Oregon State University, 1975. / Typescript (photocopy). Includes bibliographical references. Also available on the World Wide Web.
395

Convesion of industrial compression cooling to absorption cooling in an integrated district heating and cooling system

VILAFRANCA MANGUÁN, ANA January 2009 (has links)
Astra Zeneca plant in Gärtuna has many compression cooling machines for comfort that consume about 11.7 GWh of electricity per year. Many of the cooling machines are old; due to the increase of production of the plant, cooling capacity was limited and new machines have been built. Now, the cooling capacity is over-sized. Söderenergi is the district heating plant that supplies heating to Astra Zeneca plant. Due to the strict environmental policy in the energy plant, last year, a bio-fuelled CHP plant was built. It is awarded with the electricity certificate system. The study investigates the possibility for converting some of the compression cooling to absorption cooling and then analyzes the effects of the district heating system through MODEST optimizations. The effects of the analysis are studied in a system composed by the district heating system in Södertälje and cooling system in Astra Zeneca. In the current system the district heating production is from boiler and compression system supplies cooling to Astra Zeneca. The future system includes a CHP plant for the heating production, and compression system is converted to absorption system in Astra Zeneca. Four effects are analyzed in the system: optimal distribution of the district heating production with the plants available, saving fuel, environmental impact and total cost. The environmental impact has been analyzed considering the marginal electricity from coal condensing plants. The total cost is divided in two parts: production cost, in which district heating cost, purchase of electricity and Emissions Trading cost are included, and investment costs. The progressive changes are introduced in the system as four different scenarios. The introduction of the absorption machines in the system with the current district heating production increases the total cost due to the low electricity price in Sweden. The introduction of the CHP plant in the district heating production supposes a profit of the production cost with compression system due to the high income of the electricity produced that is sold to the grid; it profit increases when compression is replaced by absorption system. The fuel used in the production of the future system decreases and also the emissions. Then, the future system becomes an opportunity from an environmental and economical point of view. At higher purchase electricity prices predicted in the open electricity market for an immediately future, the future system will become more economically advantageous.
396

Factors Influencing Ecological Metrics of Thermal Response in North American Freshwater Fish

Hasnain, Sarah 25 July 2012 (has links)
Habitat temperature is a major determinant of performance and activity in fish. I examined the relationships between thermal response metrics describing growth (optimal growth temperature [OGT] and final temperature preferendum [FTP]), survival (upper incipient lethal temperature [UILT] and critical thermal maximum [CTMax]), and reproduction (optimum spawning [OS] and optimum egg development temperature [OE]) for 173 North American freshwater fish species. All metrics were highly correlated and associated with thermal preference class, reproductive guild and spawning season. Controlling for phylogeny resulted in an overall decrease in correlation strength, varying with metric pair relationship. ANCOVA and Bayesian hierarchical models were utilized to assess the influence of phylogeny on metric pair relationships. For both methods, FTP based metric pairs were weakly correlated within taxonomic family. Strong within family associations were found for reproduction metrics OS-OE. These results suggest that evolutionary history plays an important role in determining species thermal response to their environment.
397

Factors Influencing Ecological Metrics of Thermal Response in North American Freshwater Fish

Hasnain, Sarah 25 July 2012 (has links)
Habitat temperature is a major determinant of performance and activity in fish. I examined the relationships between thermal response metrics describing growth (optimal growth temperature [OGT] and final temperature preferendum [FTP]), survival (upper incipient lethal temperature [UILT] and critical thermal maximum [CTMax]), and reproduction (optimum spawning [OS] and optimum egg development temperature [OE]) for 173 North American freshwater fish species. All metrics were highly correlated and associated with thermal preference class, reproductive guild and spawning season. Controlling for phylogeny resulted in an overall decrease in correlation strength, varying with metric pair relationship. ANCOVA and Bayesian hierarchical models were utilized to assess the influence of phylogeny on metric pair relationships. For both methods, FTP based metric pairs were weakly correlated within taxonomic family. Strong within family associations were found for reproduction metrics OS-OE. These results suggest that evolutionary history plays an important role in determining species thermal response to their environment.
398

Analytical and Experimental Study of a PV/Thermal Transpired Collector

Veronique, Delisle January 2008 (has links)
In the last few years, unglazed transpired solar collectors (UTCs) have proven to be an effective and viable method of reducing HVAC loads and building energy consumption. With the growing interest in PV/Thermal collectors, a study of a PV/Thermal UTC with PV cells mounted directly on the absorber was carried out. In the first part of this project, a TRNSYS model was developed to predict the performance of a PV/Thermal UTC. It was based on an actual UTC model, but modifications were made to account for the wind, the presence of PV cells and the corrugated shape of the plate. Simulations showed that mounting the cells only on the top surfaces of the corrugations prevented the cells from being shaded by the collector and consequently, presented the greatest potential. With this configuration, it was found that the addition of PV cells on the UTC decreased the thermal energy savings by 5.9 %, but that 13.6 % of the thermal energy savings could be recovered in the production of electricity. In the second part of the study, a prototype of a PV/Thermal UTC was constructed and tested outdoors. It was found that 10 % more electricity was obtained when the fan was turned on than for zero flow conditions. It was also observed that at greater air suction rates, more cooling of the panel was achieved and potentially higher electrical power could be produced. The effect of the PV cells on the collector thermal performance could not be quantified, however, due to the small portion of PV cells on the whole collector area. TRNSYS simulations were performed using the prototype parameters and the weather data of some experimental days. The results predicted by the component developed showed similar trends as the experimental results. The predictions were, however, not within the experimental uncertainties. The deviation in the results was attributed to the fact that the wind heat losses were not estimated accurately by the model and the non-uniform suction at the panel surface that prevented the prototype tested to work at its optimal performance.
399

Isolerande balkonginfästningar : Thermally-insulated balconies

Kulasin, Aid January 2009 (has links)
In this work a study has been performed to show the different kinds of insulated balcony connections exists on the market. In the work there is also a short description of thermal bridges concerning balconies. A description of older solutions for balcony connections is given as well as a calculation of the difference in energy costs for a insulated balcony connection compared to the standard connection. The work includes a short description of the different products. After that there is a short information about their insulation properties, durability, acoustic performance, assembly, computer programme and a short analyses for each product.
400

Analytical and Experimental Study of a PV/Thermal Transpired Collector

Veronique, Delisle January 2008 (has links)
In the last few years, unglazed transpired solar collectors (UTCs) have proven to be an effective and viable method of reducing HVAC loads and building energy consumption. With the growing interest in PV/Thermal collectors, a study of a PV/Thermal UTC with PV cells mounted directly on the absorber was carried out. In the first part of this project, a TRNSYS model was developed to predict the performance of a PV/Thermal UTC. It was based on an actual UTC model, but modifications were made to account for the wind, the presence of PV cells and the corrugated shape of the plate. Simulations showed that mounting the cells only on the top surfaces of the corrugations prevented the cells from being shaded by the collector and consequently, presented the greatest potential. With this configuration, it was found that the addition of PV cells on the UTC decreased the thermal energy savings by 5.9 %, but that 13.6 % of the thermal energy savings could be recovered in the production of electricity. In the second part of the study, a prototype of a PV/Thermal UTC was constructed and tested outdoors. It was found that 10 % more electricity was obtained when the fan was turned on than for zero flow conditions. It was also observed that at greater air suction rates, more cooling of the panel was achieved and potentially higher electrical power could be produced. The effect of the PV cells on the collector thermal performance could not be quantified, however, due to the small portion of PV cells on the whole collector area. TRNSYS simulations were performed using the prototype parameters and the weather data of some experimental days. The results predicted by the component developed showed similar trends as the experimental results. The predictions were, however, not within the experimental uncertainties. The deviation in the results was attributed to the fact that the wind heat losses were not estimated accurately by the model and the non-uniform suction at the panel surface that prevented the prototype tested to work at its optimal performance.

Page generated in 0.0573 seconds