• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3512
  • 2061
  • 826
  • 688
  • 559
  • 170
  • 124
  • 103
  • 82
  • 62
  • 59
  • 37
  • 37
  • 37
  • 37
  • Tagged with
  • 10277
  • 1557
  • 1370
  • 1254
  • 1167
  • 1108
  • 905
  • 825
  • 794
  • 749
  • 745
  • 692
  • 657
  • 613
  • 533
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
551

Experimental Investigation of Hyperbolic Heat Transfer in Heterogeneous Materials

Tilahun, Muluken 04 February 1998 (has links)
In previous studies, evidence of thermal wave behavior was found in heterogeneous materials. Thus, the overall goal of this study was to experimentally verify those results, and develop a parameter estimation scheme to estimate the thermal properties of various heterogeneous materials. Two types of experiments (Experiments 1 and 2) were conducted to verify the existence or non-existence of thermal wave behavior in heterogeneous materials. In Experiment 1 sand, ion exchanger, and sodium bicarbonate were used as test materials, while processed meat (bologna) was used in Experiment 2. The measured temperature profiles of the samples were compared with the parabolic and hyperbolic heat conduction model results. The values of thermal diffusivity and thermal conductivity were obtained using the Box-Kanemasu parameter estimation method which is based on the comparison between temperature measurements and the solutions of the theoretical model. Overall, no clear experimental evidence was found to justify the use of hyperbolic heat conduction models rather than parabolic for the materials tested. Further comprehensive experimentation using different heating rates is warranted to definitely identify the accurate type of heat conduction process associated with such materials, and to describe the physical mechanisms which produce wave-like heat conduction in heterogeneous materials. / Master of Science
552

Thermal age, cytosine deamination and the veracity of 8,000 year old wheat DNA from sediments

Kistler, L., Smith, O., Ware, R., Momber, G., Bates, R., Garwood, P., Fitch, Simon, Pallen, M., Gaffney, Vincent, Allaby, R.G. 17 November 2015 (has links)
Yes / Recently, the finding of 8,000 year old wheat DNA from submerged marine sediments (1) was challenged on the basis of a lack of signal of cytosine deamination relative to three other data sets generated from young samples of herbarium and museum specimens, and a 7,000 year old human skeleton preserved in a cave environment (2). The study used a new approach for low coverage data sets to which tools such as mapDamage cannot be applied to infer chemical damage patterns. Here we show from the analysis of 148 palaeogenomic data sets that the rate of cytosine deamination is a thermally correlated process, and that organellar generally shows higher rates of deamination than nuclear DNA in comparable environments. We categorize four clusters of deamination rates (alpha,beta,gamma,epsilon) that are associated with cold stable environments, cool but thermally fluctuating environments, and progressively warmer environments. These correlations show that the expected level of deamination in the sedaDNA would be extremely low. The low coverage approach to detect DNA damage by Weiss et al. (2) fails to identify damage samples from the cold class of deamination rates. Finally, different enzymes used in library preparation processes exhibit varying capability in reporting cytosine deamination damage in the 5 prime region of fragments. The PCR enzyme used in the sedaDNA study would not have had the capability to report 5 prime cytosine deamination, as they do not read over uracil residues, and signatures of damage would have better been sought at the 3 prime end. The 8,000 year old sedaDNA matches both the thermal age prediction of fragmentation, and the expected level of cytosine deamination for the preservation environment. Given these facts and the use of rigorous controls these data meet the criteria of authentic ancient DNA to an extremely stringent level.
553

A Thermoelastohydrodynamic Model of The Morton Effect Operating in Overhung Rotors Supported by Plain or Tilting Pad Journal Bearings

Balbahadur, Avinash Chetnand 07 March 2001 (has links)
Unlike most instabilities, which are non-synchronous in nature, the Morton Effect is a synchronous phenomenon. This thermal instability occurs primarily in overhung rotors that are supported by fluid film bearings and is caused by differential viscous shearing within the bearing lubricant. The Morton Effect has also gained much attention within the last decade. Prior studies of the Morton Effect have used complex analysis in the frequency domain to model this instability. However, such an approach makes it difficult to develop a user-friendly design tool for engineers. The current research employs a steady-state analysis to predict the onset of the Morton Effect, and it uses an instability criterion which is based on a threshold unbalance caused by a force equal to 15% of the weight of the rotor. It is hoped that this method will provide a more easily adaptable platform for design and analytical purposes. The current model has demonstrated good agreement with other theoretical models and experimental data. This agreement applies to rotors that are supported by either plain or tilting pad journal bearings and it was found that a worse case scenario for the Morton Effect would involve centered, circular and large-amplitude bearing orbits. A test rotor was also designed and built. Initial experimental data revealed an unusual instability that might have been caused by the Morton Effect. / Ph. D.
554

Characterizing Thermal and Chemical Properties of Materials at the Nanoscale Using Scanning Probe Microscopy

Grover, Ranjan January 2006 (has links)
Current magnetic data storage technology is encountering certain fundamental limitations that present roadblocks to its scalability to areal densities of 1 Tbit/in^2 and beyond. Next generation magnetic storage technology is expected to use optical near field techniques to heat the magnetic film locally to write data bits. This requires experimental measurement of thermal conductivity of materials with sub--100 nm resolution. This is essential for the tailoring of the thin film stack to optimize the heat transfer of the process. This can be accomplished with a simple modification to a traditional atomic force microscopy (AFM) system. The modification requires the deposition of a thin metal film on the AFM cantilever thus creating a bimetallic cantilever. The curvature of a bimetallic cantilever is sensitive to temperature. Another modification is the use of a heating laser to raise the temperature of the cantilever so that when it scans across a sample with areas of varying thermal conductivity the bimetallic deformation of the heated cantilever is altered. The resulting system is sensitive to local variations in thermal conductivity with nanoscale resolution. Nanoscale thermal conductivity measurements can then be used to optimize the heat transfer properties of the materials used in a heat assisted magnetic recording system. AFM technology can also play a key role in the development of next generation solid-state chemical sensors. An AFM can be used to measure the workfunction of a material with near atomic resolution thus enabling the study of chemical reactions with high spatial resolution. Since chemical sensors typically use a chemical reaction at their front end to monitor the prescience of a gas, an AFM system can thus be used to understand and optimize the properties of the chemical reaction by monitoring the local workfunction. In this thesis, I explain the use of atomic force microscopy in measuring thermal and chemical properties of materials with applications towards the magnetic storage industry and chemical sensing.
555

LASER-INDUCED THERMAL DECAY OF PYRIDINE AND CHLORIDE SURFACE-ENHANCED RAMAN SCATTERING AS A PROBE OF SILVER SURFACE-ACTIVE SITES

Sobocinski, Raymond Louis, 1962- January 1987 (has links)
The activation parameters for the temperature dependent irreversible loss of surface-enhanced Raman scattered (SERS) intensity from pyridine and chloride adsorbed at silver surfaces in an electrochemical environment have been determined. Laser-induced heating is introduced as a probe of the chemical nature of SERS-active sites. Surface temperatures are calculated from spectroscopic data. The activation energies associated with the destruction of SERS-active sites at a surface roughened by an illuminated oxidation-reduction cycle (ORC) are 12.8 ± 3.2 kcal/mole and 27.7 ± 3.1 kcal/mole for pyridine at two different types of sites on the Ag surface. Similarly, values for coadsorbed chloride are found to be 11.1 ± 2.4 kcal/mole and 24.5 ± 3.8 kcal/mole. An activation energy of 27.4 ± 1.9 kcal/mole is obtained for pyridine on a silver surface roughened by a nonilluminated ORC. Evidence for the desorption of pyridine and chloride is presented.
556

Synthesis and characterization of nanofluids for cooling applications.

Botha, Subelia Senara. January 2006 (has links)
<p>Low thermal conductivity is a primary limitation in the development of energy-efficient heat transfer fluids that are required in numerous industrial sectors. Recently submicron and high aspect ratio particles (nanoparticles and nanotubes) were introduced into the heat transfer fluids to enhance the thermal conductivity of the resulting nanofluids. The aim of this project was to investigate the physico-chemical properties of nanofluids synthesized using submicron and high aspect ratio particles suspended in heat transfer fluids .</p>
557

Improved lumped parameter thermal modelling of synchronous generators

Mejuto, Carlos January 2010 (has links)
Within the existing available mix of numerical and analytical thermal analysis options, lumped parameter thermal modelling is selected as the operational backbone to develop an improved novel synchronous generator thermal modelling package. The objective is for the creation of a user friendly quick feedback tool, which can serve as a means to make quick machine design thermal calculations and answer customer queries quickly and reliably. Furthermore, thermally improved generator designs will allow for inevitable operational losses to be channelled away from the machine more efficiently. As a result, machine component temperatures will be reduced, allowing lower generator thermal ratings. The end result will be smaller, longer lasting, more efficient generators, with the ability to be adapted with greater ease to particular applications. With the contribution of selected numerical analysis techniques, mainly finite element analysis for the distribution of iron losses, the MySolver thermal modelling package is developed and presented in this thesis. It is this combination of numerical and analytical tools that improves synchronous generator thermal modelling accuracy, but ultimately it is the lumped parameter nature of the thermal models developed that makes MySolver succeed as a reliable quick feedback electrical machine thermal design tool, validated using experimental results for a wide range of operating conditions. The initial part of the thesis analyses the electrical machine thermal modelling techniques available today, indicating advantages and disadvantages associated with each one, and providing a rationale for the selection of lumped parameter modelling to be used by MySolver. The development of the synchronous generator lumped parameter thermal models is detailed, with examples on its construction presented. Subsequently, finite element analysis is utilised to predict the distribution of machine iron losses across the rotor and stator laminations, with the findings applied to MySolver. Furthermore, a study is performed into the lumped parameter discretisation level needed to effectively represent machine windings. MySolver is experimentally verified using experimental data from a fully instrumented synchronous generator and this data is also used to obtain further insight into the temperature distribution within the generator. In the final part results are evaluated and the use of MySolver for modelling and optimising electrical machines is discussed. Finally, appropriate conclusions on the work presented are drawn.
558

Comfort Climate Evaluation with Thermal Manikin Methods and Computer Simulation Models

Nilsson, Håkan O January 2004 (has links)
Increasing concern about energy consumption and thesimultaneous need for an acceptable thermal environment makesit necessary to estimate in advance what effect differentthermal factors will have on the occupants. Temperaturemeasurements alone do not account for all climate effects onthe human body and especially not for local effects ofconvection and radiation. People as well as thermal manikinscan detect heat loss changes on local body parts. This factmakes it appropriate to develop measurement methods andcomputer models with the corresponding working principles andlevels of resolution. One purpose of this thesis is to linktogether results from these various investigation techniqueswith the aim of assessing different effects of the thermalclimate on people. The results can be used to facilitatedetailed evaluations of thermal influences both in indoorenvironments in buildings and in different types ofvehicles. This thesis presents a comprehensive and detaileddescription of the theories and methods behind full-scalemeasurements with thermal manikins. This is done with new,extended definitions of the concept of equivalent temperature,and new theories describing equivalent temperature as avector-valued function. One specific advantage is that thelocally measured or simulated results are presented with newlydeveloped "comfort zone diagrams". These diagrams provide newways of taking into consideration both seat zone qualities aswell as the influence of different clothing types on theclimate assessment with "clothing-independent" comfort zonediagrams. Today, different types of computer programs such as CAD(Computer Aided Design) and CFD (Computational Fluid Dynamics)are used for product development, simulation and testing of,for instance, HVAC (Heating, Ventilation and Air Conditioning)systems, particularly in the building and vehicle industry.Three different climate evaluation methods are used andcompared in this thesis: human subjective measurements, manikinmeasurements and computer modelling. A detailed description ispresented of how developed simulation methods can be used toevaluate the influence of thermal climate in existing andplanned environments. In different climate situationssubjective human experiences are compared to heat lossmeasurements and simulations with thermal manikins. Thecalculation relationships developed in this research agree wellwith full-scale measurements and subject experiments indifferent thermal environments. The use of temperature and flowfield data from CFD calculations as input produces acceptableresults, especially in relatively homogeneous environments. Inmore heterogeneous environments the deviations are slightlylarger. Possible reasons for this are presented along withsuggestions for continued research, new relationships andcomputer codes. Key-words:equivalent temperature, subject, thermalmanikin, mannequin, thermal climate assessment, heat loss,office environment, cabin climate, ventilated seat, computermodel, CFD, clothing-independent, comfort zone diagram. / <p>QCR 20161027</p>
559

Extraction de modèles thermiques simplifiés des machines électriques à partir d’un calcul du champ de températures / Extraction of simplified equivalent thermal models of electrical machines from temperature field calculations

Idoughi, Mohand Laïd 09 December 2011 (has links)
L’élévation de la température est l’un des principaux paramètres limitant la puissance nominale des machines électriques. La température atteinte au niveau des bobinages, peut avoir de graves conséquences sur le système d’isolation des enroulements et peut ainsi réduire la durée de vie des machines électriques. Le travail de recherche effectué dans cette thèse s’attache à l’extraction de modèles thermiques simplifiés permettant la prédiction des niveaux d’échauffement. Nous avons alors mis en place une démarche basée sur une méthode numérique (Finite Intgeration Technique) qui permet une identification naturelle des grandeurs du modèle thermique. Cette démarche nécessite d’homogénéiser le bobinage en le remplaçant par un seul matériau homogène équivalent permettant de reproduire le même comportement thermique du cas réel du bobinage. Pour ce faire, plusieurs techniques d’homogénéisation ont été employées. Nous nous sommes également intéressés aux différentes configurations des conducteurs dans l’encoche en vue d’obtenir une meilleure évacuation de la chaleur dans le bobinage des machines électriques. La démarche proposée dans ce travail a pout objectif d’obtenir des modèles thermiques simplifiés qui peuvent être réduit à un seul nœud pour calculer la température du point chaud. La validité des modèles est évaluée par comparaison aux éléments finis en considérant deux formes géométriques de l’encoche : une encoche simple puis une encoche de géométrie plus complexe que l’on retrouve dans une machine à commutation de flux. / The temperature rise is one of the main parameters limiting the power of electrical machine. In fact in the stator windings the temperature rise decreases the performances of its insulation system and it can reduce the life time of the motors and it may even lead to the motor failure. Appropriate models of the windings are necessary to find the hot spot of the machine. The work proposed in this thesis focuses on the extraction of simplified thermal models in order to evaluate the temperature distribution. An approach based on a numerical method (Finite Integration Technique) has been developed allowing the identification of the thermal model parameters. As a first step the homogenization of the winding is necessary to obtain the thermal model of the stator slot which has a complex heterogeneous structure requiring careful modeling. The objective is then to replace the conductors and the resin by one homogenous material that reproduces a similar thermal behavior. Several homogenization techniques are used to determine the effective thermal conductivity of the composite material. We are also interested to study different configurations or distributions of the conductors in the slot to limit heat dissipation in the windings of electrical machines. The second part of this thesis presents a method, based on the Finite Integration Technique (FIT) for the discretization that gives us an equivalent thermal model allowing the evaluation of transient temperature evolutions in the slot with low calculation cost.
560

Building design and environmental performance : thermal comfort through thermal mass and natural ventilation in social housing in Northeast Brazil

De Abreu Negreiros, Bianca January 2018 (has links)
Environmental consciousness leads the construction industry to greater concerns about local adaptation, less waste of resources and energy efficiency In Brazil, earth construction is a feasible approach to house building in many locations and can play a useful part in resolving the housing problems faced by that country, being already a popular approach to providing affordable housing for low income groups within the population, particularly in the Northeast Region of the country, although usually not built correctly. Although used since the colonial period, from 1500, knowledge around earth systems is not formally embedded within the Brazilian building standards and this is unhelpful in terms of promoting quality of performance of buildings thus constructed. For example, appropriate use of high thermal mass in conjunction with natural ventilation, which is frequently used in Brazil due to energy costs, can significantly influence the thermal comfort within residences, but appropriate guidance is lacking. This research considers the combined effects of earth construction and natural ventilation upon thermal comfort within social housing in Northeast Brazil. The main thesis hypothesis is that the use of thermal mass provided by earth construction combined with natural ventilation results in acceptable levels of thermal performance with respect to thermal comfort in both hot and humid and hot and dry climates. The aim is to evaluate the thermal performance of high thermal mass dwellings using adobe system combined with natural ventilation in the bioclimatic zones of Brazil's Northeast Region. The method explores thermal performance simulation using Design Builder, a graphical interface for Energy Plus program. The assessment uses parametric analysis and the adaptive thermal comfort index from de Dear and Brager (1998). The results suggest that earth construction provides a high number of comfort hours in all bioclimatic zones in Northeast Brazil and ventilation use enhances the comfort sensation.

Page generated in 0.0635 seconds