Spelling suggestions: "subject:"normalisierung"" "subject:"formalisierung""
1 |
Chaotic diffusion in nonlinear Hamiltonian systemsMulansky, Mario January 2012 (has links)
This work investigates diffusion in nonlinear Hamiltonian systems.
The diffusion, more precisely subdiffusion, in such systems is induced by the intrinsic chaotic behavior of trajectories and thus is called chaotic diffusion''.
Its properties are studied on the example of one- or two-dimensional lattices of harmonic or nonlinear oscillators with nearest neighbor couplings.
The fundamental observation is the spreading of energy for localized initial conditions.
Methods of quantifying this spreading behavior are presented, including a new quantity called excitation time.
This new quantity allows for a more precise analysis of the spreading than traditional methods.
Furthermore, the nonlinear diffusion equation is introduced as a phenomenologic description of the spreading process and a number of predictions on the density dependence of the spreading are drawn from this equation.
Two mathematical techniques for analyzing nonlinear Hamiltonian systems are introduced.
The first one is based on a scaling analysis of the Hamiltonian equations and the results are related to similar scaling properties of the NDE.
From this relation, exact spreading predictions are deduced.
Secondly, the microscopic dynamics at the edge of spreading states are thoroughly analyzed, which again suggests a scaling behavior that can be related to the NDE.
Such a microscopic treatment of chaotically spreading states in nonlinear Hamiltonian systems has not been done before and the results present a new technique of connecting microscopic dynamics with macroscopic descriptions like the nonlinear diffusion equation.
All theoretical results are supported by heavy numerical simulations, partly obtained on one of Europe's fastest supercomputers located in Bologna, Italy.
In the end, the highly interesting case of harmonic oscillators with random frequencies and nonlinear coupling is studied, which resembles to some extent the famous Discrete Anderson Nonlinear Schroedinger Equation.
For this model, a deviation from the widely believed power-law spreading is observed in numerical experiments.
Some ideas on a theoretical explanation for this deviation are presented, but a conclusive theory could not be found due to the complicated phase space structure in this case.
Nevertheless, it is hoped that the techniques and results presented in this work will help to eventually understand this controversely discussed case as well. / Diese Arbeit beschäftigt sich mit dem Phänomen der Diffusion in nichtlinearen Systemen.
Unter Diffusion versteht man normalerweise die zufallsmäss ige Bewegung von Partikeln durch den stochastischen Einfluss einer thermodynamisch beschreibbaren Umgebung.
Dieser Prozess ist mathematisch beschrieben durch die Diffusionsgleichung.
In dieser Arbeit werden jedoch abgeschlossene Systeme ohne Einfluss der Umgebung betrachtet.
Dennoch wird eine Art von Diffusion, üblicherweise bezeichnet als Subdiffusion, beobachtet.
Die Ursache dafür liegt im chaotischen Verhalten des Systems.
Vereinfacht gesagt, erzeugt das Chaos eine intrinsische Pseudo-Zufälligkeit, die zu einem gewissen Grad mit dem Einfluss einer thermodynamischen Umgebung vergleichbar ist und somit auch diffusives Verhalten provoziert.
Zur quantitativen Beschreibung dieses subdiffusiven Prozesses wird eine Verallgemeinerung der Diffusionsgleichung herangezogen, die Nichtlineare Diffusionsgleichung.
Desweiteren wird die mikroskopische Dynamik des Systems mit analytischen Methoden untersucht, und Schlussfolgerungen für den makroskopischen Diffusionsprozess abgeleitet.
Die Technik der Verbindung von mikroskopischer Dynamik und makroskopischen Beobachtungen, die in dieser Arbeit entwickelt wird und detailliert beschrieben ist, führt zu einem tieferen Verständnis von hochdimensionalen chaotischen Systemen.
Die mit mathematischen Mitteln abgeleiteten Ergebnisse sind darüber hinaus durch ausführliche Simulationen verifiziert, welche teilweise auf einem der leistungsfähigsten Supercomputer Europas durchgeführt wurden, dem sp6 in Bologna, Italien.
Desweiteren können die in dieser Arbeit vorgestellten Erkenntnisse und Techniken mit Sicherheit auch in anderen Fällen bei der Untersuchung chaotischer Systeme Anwendung finden.
|
2 |
Collective phenomena in the non-equilibrium quark-gluon plasmaSchenke, Björn Peter. Unknown Date (has links) (PDF)
Frankfurt (Main), University, Diss., 2008.
|
3 |
Nonequilibrium dynamics of strongly correlated quantum systemsManmana, Salvatore Rosario, January 2006 (has links)
Stuttgart, Univ., Diss., 2006.
|
4 |
Theory of eigenstate thermalization / Theorie der Thermalisierung von QuanteneigenzuständenHelbig, Tobias Thimo January 2023 (has links) (PDF)
Next to the emergence of nearly isolated quantum systems such as ultracold atoms with unprecedented experimental tunability, the conceptualization of the eigenstate thermalization hypothesis (ETH) by Deutsch and Srednicki in the late 20th century has sparked exceptional interest in the mechanism of quantum thermalization. The ETH conjectures that the expectation value of a local observable within the quantum state of an isolated, interacting quantum system converges to the thermal equilibrium value at large times caused by a loss of phase coherence, referred to as dephasing. The thermal behavior within the quantum expectation value is traced back to the level of individual eigenstates, who locally act as a thermal bath to subsystems of the full quantum system and are hence locally indistinguishable to thermal states. The ETH has important implications for the understanding of the foundations of statistical mechanics, the quantum-to-classical transition, and the nature of quantum entanglement. Irrespective of its theoretical success, a rigorous proof has remained elusive so far. $$ \ $$
An alternative approach to explain thermalization of quantum states is given by the concept of typicality. Typicality deals with typical states \(\Psi\) chosen from a subspace of Hilbert space with energy \(E\) and small fluctuations \(\delta\) around it. It assumes that the possible microstates of this subspace of Hilbert space are uniformly distributed random vectors. This is inspired by the microcanonical ensemble in classical statistical mechanics, which assumes equal weights for all accessible microstates with energy \(E\) within an energy allowance \(\delta\). It follows from the ergodic hypothesis, which states that the time spent in each part of phase space is proportional to its volume leading to large time averages being equated to ensemble averages. In typicality, the Hilbert space of quantum mechanics is hence treated as an analogue of classical phase space where statistical and thermodynamic properties can be defined. Since typicality merely shifts assumptions of statistical mechanics to the quantum realm, it does not provide a complete understanding of the emergence of thermalization on a fundamental microscopic level. $$ \ $$
To gain insights on quantum thermalization and derive it from a microscopic approach, we exclusively consider the fundamental laws of quantum mechanics. In the joint work with T. Hofmann, R. Thomale and M. Greiter, on which this thesis reports, we explore the ETH in generic local Hamiltonians in a two-dimensional spin-\(1/2\) lattice with random nearest neighbor spin-spin interactions and random on-site magnetic fields. This isolated quantum system is divided into a small subsystem weakly coupled to the remaining part, which is assumed to be large and which we refer to as bath. Eigenstates of the full quantum system as well as the action of local operators on those can then be decomposed in terms of a product basis of eigenstates of the small subsystem and the bath. Central to our analysis is the fact that the coupling between the subsystem and the bath, represented in terms of the uncoupled product eigenbasis, is given by an energy dependent random band matrix, which is obtained from both analytical and numerical considerations. $$ \ $$
Utilizing the methods of Dyson-Brownian random matrix theory for random band matrices, we analytically show that the overlaps of eigenstates of the full quantum system with the uncoupled product eigenbasis are described by Cauchy-Lorentz distributions close to their respective peaks. The result is supported by an extensive numerical study using exact diagonalization, where the numerical parameters for the overlap curve agree with the theoretical calculation. The information on the decomposition of the eigenstates of the full quantum system enables us to derive the reduced density matrix within the small subsystem given the pure density matrix of a single eigenstate. We show that in the large bath limit the reduced density matrix converges to a thermal density matrix with canonical Boltzmann probabilities determined by renormalized energies of the small subsystem which are shifted from their bare values due the influence of the coupling to the bath. The behavior of the reduced density matrix is confirmed through a finite size scaling analysis of the numerical data. Within our calculation, we make use of the pivotal result, that the density of states of a local random Hamiltonian is given by a Gaussian distribution under very general circumstances. As a consequence of our analysis, the quantum expectation value of any local observable in the subsystem agrees with its thermal expectation value, which proves the validity of the ETH in the equilibrium phase for the considered class of random local Hamiltonians and elevates it from hypothesis to theory. $$ \ $$
Our analysis of quantum thermalization solely relies on the application of quantum mechanics to large systems, locality and the absence of integrability. With the self-averaging property of large random matrices, random matrix theory does not entail a statistical assumption, but is rather applied as a mathematical tool to extract information about the behavior of large quantum systems. The canonical distribution of statistical mechanics is derived without resorting to statistical assumptions such as the concepts of ergodicity or maximal entropy, nor assuming any characteristics of quantum states such as in typicality. In future research, with this microscopic approach it may become possible to exactly pinpoint the origin of failure of quantum thermalization, e.g. in systems that exhibit many body localization or many body quantum scars. The theory further enables the systematic investigation of equilibration, i.e. to study the time scales on which thermalization takes place. / Neben der Entwicklung experimentell zugänglicher nahezu isolierter Quantensysteme wie ultrakalter Gase hat die Formulierung der Eigenstate Thermalization Hypothesis (ETH) durch Deutsch und Srednicki im späten 20. Jahrhundert ein gesteigertes Interesse am Mechanismus der Quantenthermalisierung geweckt. Die ETH postuliert, dass der Erwartungswert einer lokalen Observablen innerhalb des Quantenzustands eines isolierten, wechselwirkenden Quantensystems bei großen Zeiten zum thermischen Gleichgewichtswert konvergiert. Dies vollzieht sich durch den Verlust der Phasenkohärenz im Erwartungswert der lokalen Observable, was als Dephasing bekannt ist. Das thermische Verhalten innerhalb des Quantenerwartungswerts wird auf die Ebene einzelner Eigenzustände zurückgeführt, die lokal als thermisches Bad für Untersysteme des gesamten Quantensystems wirken und daher lokal nicht von thermischen Zuständen unterscheidbar sind. Die ETH hat wichtige Auswirkungen auf das Verständnis der Grundlagen der statistischen Mechanik, des Übergangs von der Quanten- zur klassischen Physik und der Natur der Quantenverschränkung. Ungeachtet ihres theoretischen Erfolges ist ein rigoroser Beweis der Hypothese bisher nicht erfolgt. $$ \ $$
Ein alternativer Ansatz zur Erklärung der Thermalisierung von Quantenzuständen ist das Konzept der typicality. Typicality befasst sich mit typischen Zuständen \(\Psi\), die aus einem Unterraum des Hilbertraums mit Energie \(E\) und kleinen Fluktuationen \(\delta\) ausgewählt werden. Dabei wird angenommen, dass die möglichen Mikrozustände dieses Unterraums des Hilbertraums gleichmäßig verteilte Zufallsvektoren sind. Dies ist ein aus dem klassischen mikrokanonischen Ensemble übertragener Ansatz, der von einer Gleichgewichtung aller Mikrozustände mit der Energie \(E\) in einem Energiebereich \(\delta\) ausgeht. Das geht auf die ergodische Hypothese zurück, die besagt, dass die verbrachte Zeit in jedem Teil des klassischen Phasenraums proportional zu dessen Volumen ist. Dies führt schlussendlich zu einer Gleichsetzung der Mittelwerte bei großen Zeiten mit Ensemblemittelwerten. Der Hilbertraum in der Quantenmechanik wird mit typicality daher als Analogon des klassischen Phasenraums behandelt, in dem statistische und thermodynamische Eigenschaften definiert werden können. Da typicality lediglich Annahmen der statistischen Mechanik auf den Quantenbereich überträgt, kann sie kein vollständiges mikroskopisches Bild der Entstehung von Thermalisierung liefern. $$ \ $$
Um Erkenntnisse über die Quantenthermalisierung zu gewinnen und sie aus einem mikroskopischen Ansatz abzuleiten, stützen wir uns ausschließlich auf die grundlegenden Gesetze der Quantenmechanik. In der gemeinsamen Arbeit mit T. Hofmann, R. Thomale und M. Greiter, von der diese Arbeit berichtet, untersuchen wir die ETH in generischen lokalen Hamiltonians in einem zweidimensionalen Spin-\(1/2\)-Gitter mit zufälligen Spin-Spin-Wechselwirkungen zwischen nächsten Nachbarn und zufälligen lokalen Magnetfeldern. Dieses isolierte Quantensystem wird in ein kleines Untersystem aufgeteilt, das schwach an den verbleibenden Teil gekoppelt ist, der als groß angenommen und als Bad bezeichnet wird. Die Eigenzustände des gesamten Quantensystems sowie die Wirkung lokaler Operatoren auf diese können dann in Form einer Produktbasis von Eigenzuständen des kleinen Untersystems und des Bades zerlegt werden. Von zentraler Bedeutung für unsere Analyse ist die Tatsache, dass die Kopplung zwischen dem Untersystem und dem Bad, die in Form der ungekoppelten Produkteigenbasis dargestellt wird, durch eine energieabhängige Zufallsbandmatrix gegeben ist, welche sowohl aus analytischen als auch numerischen Überlegungen gewonnen wird. $$ \ $$
Unter Verwendung der Methoden der mathematischen Theorie für zufällige Bandmatrizen finden wir analytisch heraus, dass der Überlapp von Quanteneigenzuständen mit der ungekoppelten Produkteigenbasis durch Cauchy-Lorentzverteilungen in den Badenergien in der Nähe ihrer jeweiligen Peaks beschrieben werden. Das Ergebnis wird durch eine umfangreiche numerische Studie mit exakter Diagonalisierung bestätigt, bei der die numerischen Parameter für die Überlapps mit der theoretischen Berechnung übereinstimmen. Die Information über die Form der Quanteneigenzustände ermöglicht es uns, die reduzierte Dichtematrix in dem kleinen Untersystem aus der reinen Dichtematrix eines einzelnen Eigenzustandes des isolierten Quantensystems abzuleiten. Wir zeigen, dass sie im Limes großer Bäder zu einer thermischen Dichtematrix mit kanonischen Boltzmann-Gewichten auf der Diagonalen konvergiert. Dies wird mithilfe einer numerischen Skalierungsanalyse für endliche Systeme bestätigt. In unseren Berechnungen verwenden wir das zentrale Ergebnis, dass die Zustandsdichte eines lokalen zufälligen Hamiltonians unter allgemeinen Bedingungen durch eine Gauß-Verteilung gegeben ist. Aus unserer Analyse folgt, dass der Quantenerwartungswert jeder lokalen Observablen in dem Untersystem mit ihrem thermischen Erwartungswert übereinstimmt, was die Gültigkeit der ETH in der Gleichgewichtsphase für die betrachtete Klasse von Hamiltonians beweist. $$ \ $$
Unsere Analyse der Quantenthermalisierung beruht ausschließlich auf der Anwendung der Quantenmechanik auf große Systeme, der Lokalität und der fehlenden Integrabilität. Stützend auf der mathematischen Eigenschaft des Self-averaging von großen Zufallsmatrizen impliziert die Zufallsmatrixtheorie keine statistische Annahme, sondern wird vielmehr als mathematisches Instrument eingesetzt, um Informationen über das Verhalten großer Quantensysteme zu extrahieren. Die kanonische Verteilung der statistischen Mechanik wird abgeleitet, ohne auf die Konzepte der Ergodizität oder der maximalen Entropie zurückzugreifen und ohne irgendwelche Eigenschaften von Quantenzuständen anzunehmen wie es etwa bei typicality der Fall ist. Mit diesem mikroskopischen Ansatz könnte es zudem in zukünftiger Forschung möglich werden, den Ursprung des Nichterfüllens der Quantenthermalisierung, z.B. in Systemen mit Vielteilchenlokalisierung oder Quanten-Scar-Zuständen, exakt zu bestimmen. Die Theorie könnte außerdem eine systematische Untersuchung der Equilibrierung ermöglichen, d.h. die Bestimmung der Zeitskalen, auf denen Thermalisierung stattfindet.
|
5 |
Coherent state-based approaches to quantum dynamics: application to thermalization in finite systemsLoho Choudhury, Sreeja 03 June 2022 (has links)
We investigate thermalization in finite quantum systems using coherent state-based approaches to solve the time-dependent Schr\'odinger equation. Earlier, a lot of work has been done in the quantum realm, to study thermalization in spin systems, but not for the case of continuous systems. Here, we focus on continuous systems. We study the zero temperature thermalization i.e., we consider the ground states of the bath oscillators (environment).
In order to study the quantum dynamics of a system under investigation, we require numerical methods to solve the time-dependent Schr\'odinger equation. We describe different numerical methods like the split-operator fast fourier transform, coupled coherent states, static grid of coherent states, semiclassical Herman-Kluk propagator and the linearized semiclassical initial value representation to study the quantum dynamics. We also give a comprehensive comparison of the most widely used coherent state based methods. Starting from the fully variational coherent states method, after a first approximation, the coupled coherent states method can be derived, whereas an additional approximation leads to the semiclassical Herman-Kluk method. We numerically compare the different methods with another one, based on a static rectangular grid of coherent states, by applying all of them to the revival dynamics in a one-dimensional Morse oscillator, with a special focus on the number of basis states (for the coupled coherent states and Herman-Kluk methods the number of classical trajectories) needed for convergence.
We also extend the Husimi (coherent state) based version of linearized semiclassical theories for the calculation of correlation functions to the case of survival probabilities. This is a case that could be dealt with before only by use of the Wigner version of linearized semiclassical theory. Numerical comparisons of the Husimi and the Wigner case with full quantum results as well as with full semiclassical ones is given for the revival dynamics in a Morse oscillator with and without coupling to an additional harmonic degree of freedom. From this, we see the quantum to classical transition of the system dynamics due to the coupling to the environment (bath harmonic oscillator), which then can lead ultimately to our final goal of thermalization for long-time dynamics. In regard to thermalization in quantum systems, we address the following questions--- is it enough to increase the interaction strength between the different degrees of freedom in order to fully develop chaos which is the classical prerequisite for thermalization, or if, in addition, the number of those degrees of freedom has to be increased (possibly all the way to the thermodynamic limit) in order to observe thermalization.
We study the ``toppling pencil'' model, i.e., an excited initial state on top of the barrier of a symmetric quartic double well to investigate thermalization. We apply the method of coupled coherent states to study the long-time dynamics of this system. We investigate if the coupling of the central quartic double well to a finite, environmental bath of harmonic oscillators in their ground states will let the central system evolve towards its uncoupled ground state. This amounts to thermalization i.e., a cooling down to the bath ``temperature'' (strictly only defined in the thermodynamic limit) of the central system.
It is shown that thermalization can be achieved in finite quantum system with continuous variables using coherent state-based methods to solve the time-dependent Schr\'odinger equation. Also, here we witness thermalization by coupling the system to a bath of only few oscillators (less than ten), which until now has been seen for more than ten to twenty bath oscillators.
|
6 |
Thermalization and Out-of-Equilibrium Dynamics in Open Quantum Many-Body SystemsBuchhold, Michael 23 October 2015 (has links) (PDF)
Thermalization, the evolution of an interacting many-body system towards a thermal Gibbs ensemble after initialization in an arbitrary non-equilibrium state, is currently a phenomenon of great interest, both in theory and experiment. As the time evolution of a quantum system is unitary, the proposed mechanism of thermalization in quantum many-body systems corresponds to the so-called eigenstate thermalization hypothesis (ETH) and the typicality of eigenstates. Although this formally solves the contradiction of thermalizing but unitary dynamics in a closed quantum many-body system, it does neither make any statement on the dynamical process of thermalization itself nor in which way the coupling of the system to an environment can hinder or modify the relaxation dynamics.
In this thesis, we address both the question whether or not a quantum system driven away from equilibrium is able to relax to a thermal state, which fulfills detailed balance, and if one can identify universal behavior in the non-equilibrium relaxation dynamics.
As a first realization of driven quantum systems out of equilibrium, we investigate a system of Ising spins, interacting with the quantized radiation field in an optical cavity. For multiple cavity modes, this system forms a highly entangled and frustrated state with infinite correlation times, known as a quantum spin glass. In the presence of drive and dissipation, introduced by coupling the intra-cavity radiation field to the photon vacuum outside the cavity via lossy mirrors, the quantum glass state is modified in a universal manner. For frequencies below the photon loss rate, the dissipation takes over and the system shows the universal behavior of a dissipative spin glass, with a characteristic spectral density $\\mathcal{A}(\\omega)\\sim\\sqrt{\\omega}$. On the other hand, for frequencies above the loss rate, the system retains the universal behavior of a zero temperature, quantum spin glass. Remarkably, at the glass transition, the two subsystems of spins and photons thermalize to a joint effective temperature, even in the presence of photon loss. This thermalization is a consequence of the strong spin-photon interactions, which favor detailed balance in the system and detain photons from escaping the cavity. In the thermalized system, the features of the spin glass are mirrored onto the photon degrees of freedom, leading to an emergent photon glass phase. Exploiting the inherent photon loss of the cavity, we make predictions of possible measurements on the escaping photons, which contain detailed information of the state inside the cavity and allow for a precise, non-destructive measurement of the glass state.
As a further set of non-equilibrium systems, we consider one-dimensional quantum fluids driven out of equilibrium, whose universal low energy theory is formed by the so-called Luttinger Liquid description, which, due to its large degree of universality, is of intense theoretical and experimental interest. A set of recent experiments in research groups in Vienna, Innsbruck and Munich have probed the non-equilibrium time-evolution of one-dimensional quantum fluids for different experimental realizations and are pushing into a time regime, where thermalization is expected. From a theoretical point of view, one-dimensional quantum fluids are particular interesting, as Luttinger Liquids are integrable and therefore, due to an infinite number of constants of motion, do not thermalize. The leading order correction to the quadratic theory is irrelevant in the sense of the renormalization group and does therefore not modify static correlation functions, however, it breaks integrability and will therefore, even if irrelevant, induce a completely different non-equilibrium dynamics as the quadratic Luttinger theory alone. In this thesis, we derive for the first time a kinetic equation for interacting Luttinger Liquids, which describes the time evolution of the excitation densities for arbitrary initial states. The resonant character of the interaction makes a straightforward derivation of the kinetic equation, using Fermi\'s golden rule, impossible and we have to develop non-perturbative techniques in the Keldysh framework. We derive a closed expression for the time evolution of the excitation densities in terms of self-energies and vertex corrections. Close to equilibrium, the kinetic equation describes the exponential decay of excitations, with a decay rate $\\sigma^R=\\mbox\\Sigma^R$, determined by the self-energy at equilibrium. However, for long times $\\tau$, it also reveals the presence of dynamical slow modes, which are the consequence of exactly energy conserving dynamics and lead to an algebraic decay $\\sim\\tau^$ with $\\eta_D=0.58$. The presence of these dynamical slow modes is not contained in the equilibrium Matsubara formalism, while they emerge naturally in the non-equilibrium formalism developed in this thesis.
In order to initialize a one-dimensional quantum fluid out of equilibrium, we consider an interaction quench in a model of interacting, dispersive fermions in Chap.~\\ref. In this scenario, the fermionic interaction is suddenly changed at time $t=0$, such that for $t>0$ the system is not in an eigenstate and therefore undergoes a non-trivial time evolution. For the quadratic theory, the stationary state in the limit $t\\rightarrow\\infty$ is a non-thermal, or prethermal, state, described by a generalized Gibbs ensemble (GGE). The GGE takes into account for the conservation of all integrals of motion, formed by the eigenmodes of the Hamiltonian. On the other hand, in the presence of non-linearities, the final state for $t\\rightarrow\\infty$ is a thermal state with a finite temperature $T>0$. . The spatio-temporal, dynamical thermalization process can be decomposed into three regimes: A prequench regime on the largest distances, which is determined by the initial state, a prethermal plateau for intermediate distances, which is determined by the metastable fixed point of the quadratic theory and a thermal region on the shortest distances. The latter spreads sub-ballistically $\\sim t^$ in space with $0<\\alpha<1$ depending on the quench. Until complete thermalization (i.e. for times $t<\\infty$), the thermal region contains more energy than the prethermal and prequench region, which is expressed in a larger temperature $T_{t}>T_$, decreasing towards its final value $T_$. As the system has achieved local detailed balance in the thermalized region, energy transport to the non-thermal region can only be performed by the macroscopic dynamical slow modes and the decay of the temperature $T_{t}-T_\\sim t^$ again witnesses the presence of these slow modes. The very slow spreading of thermalization is consistent with recent experiments performed in Vienna, which observe a metastable, prethermal state after a quench and only observe the onset of thermalization on much larger time scales. As an immediate indication of thermalization, we determine the time evolution of the fermionic momentum distribution after a quench from non-interacting to interacting fermions. For this quench scenario, the step in the Fermi distribution at the Fermi momentum $k\\sub$ decays to zero algebraically in the absence of a non-linearity but as a stretched exponential (the exponent being proportional to the non-linearity) in the presence of a finite non-linearity. This can serve as a proof for the presence or absence of the non-linearity even on time-scales for which thermalization can not yet be observed.
Finally, we consider a bosonic quantum fluid, which is driven away from equilibrium by permanent heating. The origin of the heating is atomic spontaneous emission of laser photons, which are used to create a coherent lattice potential in optical lattice experiments. This process preserves the system\'s $U(1)$-invariance, i.e. conserves the global particle number, and the corresponding long-wavelength description is a heated, interacting Luttinger Liquid, for which phonon modes are continuously populated with a momentum dependent rate $\\partial_tn_q\\sim\\gamma |q|$. In the dynamics, we identify a quasi-thermal regime for large momenta, featuring an increasing time-dependent effective temperature. In this regime, due to fast phonon-phonon scattering, detailed balance has been achieved and is expressed by a time-local, increasing temperature. The thermal region emerges locally and spreads in space sub-ballistically according to $x_t\\sim t^{4/5}$. For larger distances, the system is described by an non-equilibrium phonon distribution $n_q\\sim |q|$, which leads to a new, non-equilibrium behavior of large distance observables. For instance, the phonon decay rate scales universally as $\\gamma_q\\sim |q|^{5/3}$, with a new non-equilibrium exponent $\\eta=5/3$, which differs from equilibrium. This new, universal behavior is guaranteed by the $U(1)$ invariant dynamics of the system and is insensitive to further subleading perturbations. The non-equilibrium long-distance behavior can be determined experimentally by measuring the static and dynamic structure factor, both of which clearly indicate the exponents for phonon decay, $\\eta=5/3$ and for the spreading of thermalization $\\eta_T=4/5$.
Remarkably, even in the presence of this strong external drive, the interactions and their aim to achieve detailed balance are strong enough to establish a locally emerging and spatially spreading thermal region.
The physical setups in this thesis do not only reveal interesting and new dynamical features in the out-of-equilibrium time evolution of interacting systems, but they also strongly underline the high degree of universality of thermalization for the classes of models studied here. May it be a system of coupled spins and photons, where the photons are pulled away from a thermal state by Markovian photon decay caused by a leaky cavity, a one-dimensional fermionic quantum fluid, which has been initialized in an out-of-equilibrium state by a quantum quench or a one-dimensional bosonic quantum fluid, which is driven away from equilibrium by continuous, external heating, all of these systems at the end establish a local thermal equilibrium, which spreads in space and leads to global thermalization for $t\\rightarrow\\infty$. This underpins the importance of thermalizing collisions and endorses the standard approach of equilibrium statistical mechanics, describing a physical system in its steady state by a thermal Gibbs ensemble.
|
7 |
Thermalization and Out-of-Equilibrium Dynamics in Open Quantum Many-Body SystemsBuchhold, Michael 23 September 2015 (has links)
Thermalization, the evolution of an interacting many-body system towards a thermal Gibbs ensemble after initialization in an arbitrary non-equilibrium state, is currently a phenomenon of great interest, both in theory and experiment. As the time evolution of a quantum system is unitary, the proposed mechanism of thermalization in quantum many-body systems corresponds to the so-called eigenstate thermalization hypothesis (ETH) and the typicality of eigenstates. Although this formally solves the contradiction of thermalizing but unitary dynamics in a closed quantum many-body system, it does neither make any statement on the dynamical process of thermalization itself nor in which way the coupling of the system to an environment can hinder or modify the relaxation dynamics.
In this thesis, we address both the question whether or not a quantum system driven away from equilibrium is able to relax to a thermal state, which fulfills detailed balance, and if one can identify universal behavior in the non-equilibrium relaxation dynamics.
As a first realization of driven quantum systems out of equilibrium, we investigate a system of Ising spins, interacting with the quantized radiation field in an optical cavity. For multiple cavity modes, this system forms a highly entangled and frustrated state with infinite correlation times, known as a quantum spin glass. In the presence of drive and dissipation, introduced by coupling the intra-cavity radiation field to the photon vacuum outside the cavity via lossy mirrors, the quantum glass state is modified in a universal manner. For frequencies below the photon loss rate, the dissipation takes over and the system shows the universal behavior of a dissipative spin glass, with a characteristic spectral density $\\mathcal{A}(\\omega)\\sim\\sqrt{\\omega}$. On the other hand, for frequencies above the loss rate, the system retains the universal behavior of a zero temperature, quantum spin glass. Remarkably, at the glass transition, the two subsystems of spins and photons thermalize to a joint effective temperature, even in the presence of photon loss. This thermalization is a consequence of the strong spin-photon interactions, which favor detailed balance in the system and detain photons from escaping the cavity. In the thermalized system, the features of the spin glass are mirrored onto the photon degrees of freedom, leading to an emergent photon glass phase. Exploiting the inherent photon loss of the cavity, we make predictions of possible measurements on the escaping photons, which contain detailed information of the state inside the cavity and allow for a precise, non-destructive measurement of the glass state.
As a further set of non-equilibrium systems, we consider one-dimensional quantum fluids driven out of equilibrium, whose universal low energy theory is formed by the so-called Luttinger Liquid description, which, due to its large degree of universality, is of intense theoretical and experimental interest. A set of recent experiments in research groups in Vienna, Innsbruck and Munich have probed the non-equilibrium time-evolution of one-dimensional quantum fluids for different experimental realizations and are pushing into a time regime, where thermalization is expected. From a theoretical point of view, one-dimensional quantum fluids are particular interesting, as Luttinger Liquids are integrable and therefore, due to an infinite number of constants of motion, do not thermalize. The leading order correction to the quadratic theory is irrelevant in the sense of the renormalization group and does therefore not modify static correlation functions, however, it breaks integrability and will therefore, even if irrelevant, induce a completely different non-equilibrium dynamics as the quadratic Luttinger theory alone. In this thesis, we derive for the first time a kinetic equation for interacting Luttinger Liquids, which describes the time evolution of the excitation densities for arbitrary initial states. The resonant character of the interaction makes a straightforward derivation of the kinetic equation, using Fermi\'s golden rule, impossible and we have to develop non-perturbative techniques in the Keldysh framework. We derive a closed expression for the time evolution of the excitation densities in terms of self-energies and vertex corrections. Close to equilibrium, the kinetic equation describes the exponential decay of excitations, with a decay rate $\\sigma^R=\\mbox\\Sigma^R$, determined by the self-energy at equilibrium. However, for long times $\\tau$, it also reveals the presence of dynamical slow modes, which are the consequence of exactly energy conserving dynamics and lead to an algebraic decay $\\sim\\tau^$ with $\\eta_D=0.58$. The presence of these dynamical slow modes is not contained in the equilibrium Matsubara formalism, while they emerge naturally in the non-equilibrium formalism developed in this thesis.
In order to initialize a one-dimensional quantum fluid out of equilibrium, we consider an interaction quench in a model of interacting, dispersive fermions in Chap.~\\ref. In this scenario, the fermionic interaction is suddenly changed at time $t=0$, such that for $t>0$ the system is not in an eigenstate and therefore undergoes a non-trivial time evolution. For the quadratic theory, the stationary state in the limit $t\\rightarrow\\infty$ is a non-thermal, or prethermal, state, described by a generalized Gibbs ensemble (GGE). The GGE takes into account for the conservation of all integrals of motion, formed by the eigenmodes of the Hamiltonian. On the other hand, in the presence of non-linearities, the final state for $t\\rightarrow\\infty$ is a thermal state with a finite temperature $T>0$. . The spatio-temporal, dynamical thermalization process can be decomposed into three regimes: A prequench regime on the largest distances, which is determined by the initial state, a prethermal plateau for intermediate distances, which is determined by the metastable fixed point of the quadratic theory and a thermal region on the shortest distances. The latter spreads sub-ballistically $\\sim t^$ in space with $0<\\alpha<1$ depending on the quench. Until complete thermalization (i.e. for times $t<\\infty$), the thermal region contains more energy than the prethermal and prequench region, which is expressed in a larger temperature $T_{t}>T_$, decreasing towards its final value $T_$. As the system has achieved local detailed balance in the thermalized region, energy transport to the non-thermal region can only be performed by the macroscopic dynamical slow modes and the decay of the temperature $T_{t}-T_\\sim t^$ again witnesses the presence of these slow modes. The very slow spreading of thermalization is consistent with recent experiments performed in Vienna, which observe a metastable, prethermal state after a quench and only observe the onset of thermalization on much larger time scales. As an immediate indication of thermalization, we determine the time evolution of the fermionic momentum distribution after a quench from non-interacting to interacting fermions. For this quench scenario, the step in the Fermi distribution at the Fermi momentum $k\\sub$ decays to zero algebraically in the absence of a non-linearity but as a stretched exponential (the exponent being proportional to the non-linearity) in the presence of a finite non-linearity. This can serve as a proof for the presence or absence of the non-linearity even on time-scales for which thermalization can not yet be observed.
Finally, we consider a bosonic quantum fluid, which is driven away from equilibrium by permanent heating. The origin of the heating is atomic spontaneous emission of laser photons, which are used to create a coherent lattice potential in optical lattice experiments. This process preserves the system\'s $U(1)$-invariance, i.e. conserves the global particle number, and the corresponding long-wavelength description is a heated, interacting Luttinger Liquid, for which phonon modes are continuously populated with a momentum dependent rate $\\partial_tn_q\\sim\\gamma |q|$. In the dynamics, we identify a quasi-thermal regime for large momenta, featuring an increasing time-dependent effective temperature. In this regime, due to fast phonon-phonon scattering, detailed balance has been achieved and is expressed by a time-local, increasing temperature. The thermal region emerges locally and spreads in space sub-ballistically according to $x_t\\sim t^{4/5}$. For larger distances, the system is described by an non-equilibrium phonon distribution $n_q\\sim |q|$, which leads to a new, non-equilibrium behavior of large distance observables. For instance, the phonon decay rate scales universally as $\\gamma_q\\sim |q|^{5/3}$, with a new non-equilibrium exponent $\\eta=5/3$, which differs from equilibrium. This new, universal behavior is guaranteed by the $U(1)$ invariant dynamics of the system and is insensitive to further subleading perturbations. The non-equilibrium long-distance behavior can be determined experimentally by measuring the static and dynamic structure factor, both of which clearly indicate the exponents for phonon decay, $\\eta=5/3$ and for the spreading of thermalization $\\eta_T=4/5$.
Remarkably, even in the presence of this strong external drive, the interactions and their aim to achieve detailed balance are strong enough to establish a locally emerging and spatially spreading thermal region.
The physical setups in this thesis do not only reveal interesting and new dynamical features in the out-of-equilibrium time evolution of interacting systems, but they also strongly underline the high degree of universality of thermalization for the classes of models studied here. May it be a system of coupled spins and photons, where the photons are pulled away from a thermal state by Markovian photon decay caused by a leaky cavity, a one-dimensional fermionic quantum fluid, which has been initialized in an out-of-equilibrium state by a quantum quench or a one-dimensional bosonic quantum fluid, which is driven away from equilibrium by continuous, external heating, all of these systems at the end establish a local thermal equilibrium, which spreads in space and leads to global thermalization for $t\\rightarrow\\infty$. This underpins the importance of thermalizing collisions and endorses the standard approach of equilibrium statistical mechanics, describing a physical system in its steady state by a thermal Gibbs ensemble.
|
Page generated in 0.0927 seconds