• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermo-mechanical analysis of non-pneumatic rubber tyres.

Harwood, Stephen January 1999 (has links)
This thesis is concerned with the design, analysis and optimisation of semi-solid or non- pneumatic tyres. More specifically, the thesis is intended to show how the FEA software package Abaqus can be used to determine whether or not an AirBoss tyre meets performance criteria in regards load/deformation criteria and if there is a likelihood of failure through overheating of the tyre during service.The work is intended to clearly explain the nature of natural rubber from a molecular description through to phenomenological descriptions used to solve for stresses, strains, creep and relaxation phenomena and temperature generation through hysteresis losses within the structure of the rubber compound.The thesis examines practical ways to obtain data for use in the analysis and describes test equipment (both "off-the-shelf" and purpose built) to obtain the required information.The objective is to progress, step by step, through the stages of analysis beginning with information to predict static loading conditions for the tyre. Viscoelastic behaviour, such as creep and relaxation are predicted and then tested to determine the correlation and refine test data before proceeding to the next stage of analysis.Ultimately, a prediction is made as to the temperature distribution throughout a section of the non-pneumatic tyre. A testing rig is described which has been built to test the analysis and enable a comparison to be made between FEA prediction and "real life".
2

Three-Dimensional Finite Element Analysis of the Pile Foundation Behavior in Unsaturated Expansive Soil

Wu, Xingyi 22 April 2021 (has links)
Expansive soils, which are widely referred to as problematic soils are extensively found in many countries of the world, especially in semi-arid and arid regions. Several billions of dollars are spent annually for maintenance or for repairs to the structures constructed with and within expansive soils. The major problems of expansive soils can be attributed to the volume changes associated with the alternate wetting and drying conditions due to the influence of environmental factors. Pile foundations have been widely accepted by practicing engineers as a reasonably good solution to reduce the damages to the structures constructed on expansive soils. Typically, piles foundations are extended through the active layer of expansive soil to reach the bedrock or placed on a soil-bearing stratum of good quality. Such a design and construction approach typically facilitates pile foundations to safely carry the loads from the superstructures and reduce the settlement. However, in many scenarios, damages associated with the pile foundations are due to the expansion of the soil that is predominantly in the active zone that contributes to the pile uplift. Such a behavior can be attributed to the water infiltration into the expansive soil, which is a key factor that is associated with the soil swelling. Due to this phenomenon, expansive soil typically moves upward with respect to the pile. This generates extra positive friction on the pile because of the relative deformation. If the superstructure is light or the applied normal stress on the head of the piles is not significant, it is likely that there will be an uplift of the pile contributing to the damage of the superstructure. In conventional engineering practice, the traditional design methods that include the rigid pile method and the elastic pile method are the most acceptable in pile foundation design. These methods are typically based on a computational technique that uses simplified assumptions with respect to soil and water content profile and the stiffness and shear strength properties. In other words, the traditional design method has limitations, as they do not take account of the complex hydromechanical behavior of the in-situ expansive soils. With the recent developments, it is possible to alleviate these limitations by using numerical modeling techniques such as finite element methods. In this thesis, a three-dimensional finite element method was used to study the hydro-mechanical behavior of a single pile in expansive soils during the infiltration process. In this thesis, a coupled hydro-mechanical model for the unsaturated expansive soil is implemented into Abaqus software for analysis of the behavior of single piles in expansive soils during water infiltration. A rigorous continuum mechanics based approach in terms of two independent stress state variables; namely, net normal stress and suction are used to form two three-dimensional constitutive surfaces for describing the changes in the void ratio and water content of unsaturated expansive soils. The elasticity parameters for soil structure and water content in unsaturated soil were obtained by differentiating the mathematical equations of constitutive surfaces. The seepage and stress-deformation of expansive soil are described by the coupled hydro-mechanical model and the Darcy’s law. To develop the subroutines, the coupled hydro-mechanical model is transferred into the coupled thermal-mechanical model. Five user-material subroutines are used in this program. The user-defined field subroutine (USDFILD) in Abaqus is used to change and transfer parameters. Three subroutines including user-defined material subroutine (UMAT), user-defined thermal material subroutine (UMATHT), and user-defined thermal expansion subroutine (UEXPAN) are developed and used to calculate the stress-deformation, the hydraulic behavior, and the expansion strain, respectively. Except for the coupled hydro-mechanical model of unsaturated expansive soils, a soil-structure interface model is implemented into the user-defined friction behavior subroutine (FRIC) to calculate the friction between soil and pile. The program is verified by using an experimental study on a single pile in Regina clay. The results show that for the single pile in expansive soil under a vertical load, water infiltration can cause a reduction in the pile shaft friction. More pile head load is transferred to the pile at greater depth, which increases the pile head settlement and pile base resistance. In future, the proposed method can also be extended for verification of other case studies from the literature. In addition, complex scenarios can be investigated to understand the behavior of piles in expansive soils.
3

Thermo-mechanical Finite Element Analysis And Design Of Tail Section For A Ballistic Missle

Guler, Togan Kemal 01 October 2012 (has links) (PDF)
During the flight of missiles, depending on the flight conditions, rotation of missiles around its centerline can cause instabilities. To override this issue, missile generally is designed in 2 sections. In the missile, the rear tail section and the front section are to rotate freely by means of bearings. Tail section on which bearings are mounted is designed according to thermal loads due to flow of hot gasses through the nozzle and mechanical loads due to inertial load, interference fit and thread preload which appear during flight of missile. The purpose of this thesis is to determine the most suitable structural parameters according to the flight conditions of missile. The geometrical and load parameters which have effect on the results were determined. Finite element model is formed by using FEA software. After that, transient nonlinear thermo-mechanical analyses are performed and the most effective parameter on VM (Von-Mises) stress and force is determined. DOE (Design of Experiments) method was used to determine the most suitable values for the structural parameters. Totally 27 different configurations are studied to achieve to the most suitable values for variable set. It is observed that VM stress and force results for all configurations are within the &plusmn / %5 ranges. So this means parameters don&rsquo / t affect the systems response very much. By taking manufacturing processes into consideration, configuration with the highest bearing inner/outer ring interference is taken. From the comparison of the results, the most suitable configuration is obtained after checking forces and VM stress on the bearings.
4

High Temperature SiC Embedded Chip Module (ECM) with Double-sided Metallization Structure

yin, jian 03 January 2006 (has links)
The work reported in this dissertation is intended to propose, analyze and demonstrate a technology for a high temperature integrated power electronics module, for high temperature (e.g those over 200oC) applications involving high density and low stress. To achieve this goal, this study has examined some existing packaging approaches, such as wire-bond interconnects and solder die-attach, flip-chip and pressure contacts. Based on the survey, a high temperature, multilayer 3-D packaging technology in the form of an Embedded Chip Module (ECM) is proposed to realize a lower stress distribution in a mechanically balanced structure with double-sided metallization layers and material CTE match in the structure. Thermal and thermo-mechanical analysis on an ECM is then used to demonstrate the benefits on the cooling system, and to study the material and structure for reducing the thermally induced mechanical stress. In the thermal analysis, the high temperature ECM shows the ability to handle a power density up to 284 W/in3 with a heat spreader only 2.1x2.1x0.2cm under forced convection. The study proves that the cooling system can be reduced by 76% by using a high temperature module in a room temperature environment. Furthermore, six proposed structures are compared using thermo-mechanical analysis, in order to obtain an optimal structure with a uniform low stress distribution. Since pure Mo cannot be electroplated, the low CTE metal Cr is proposed as the stress buffering material to be used in the flat metallization layers for a fully symmetrical ECM structure. Therefore, a chip area stress as low as 126MPa is attained. In the fabrication process, the high temperature material glass and a ceramic adhesive are applied as the insulating and sealing layers. Particularly, the Cr stress buffering layer is successfully electroplated in the high temperature ECM by means of the hard chrome plating process. The flat metallization layer is accomplished by using a combined structure with Cr and Cu metallization layers. The experimental evaluations, including the electrical and thermal characteristics of the ECM, have been part of in the study. The forward and reverse characteristics of the ECM are presented up to 250oC, indicating proper device functionality. The study on the reverse characteristics of the ECM indicates that the large leakage current at high temperature is not due to the package surrounding the chip, but chiefly caused by the Schottky junction and the chip passivation layer. Finally, steady-state and transient measurements are conducted in terms of the thermal measurements. The steady-state thermal measurement is used to demonstrate the cooling system reduction. To obtain the thermal parameters of the different layers in the high temperature ECM, the transient thermal measurement is applied to a single chip ECM based on the temperature cooling-down curve measurement. / Ph. D.
5

Extended travelling fire method framework with an OpenSees-based integrated tool SIFBuilder

Dai, Xu January 2018 (has links)
Many studies of the fire induced thermal and structural behaviour in large compartments, carried out over the past two decades, show a great deal of non-uniformity, unlike the homogeneous compartment temperature assumption in the current fire safety engineering practice. Furthermore, some large compartment fires may burn locally and they tend to move across entire floor plates over a period of time as the fuel is consumed. This kind of fire scenario is beginning to be idealized as 'travelling fires' in the context of performance‐based structural and fire safety engineering. However, the previous research of travelling fires still relies on highly simplified travelling fire models (i.e. Clifton's model and Rein's model); and no equivalent numerical tools can perform such simulations, which involves analysis of realistic fire, heat transfer and thermo-mechanical response in one single software package with an automatic coupled manner. Both of these hinder the advance of the research on performance‐based structural fire engineering. The author develops an extended travelling fire method (ETFM) framework and an integrated comprehensive tool with high computational expediency in this research, to address the above‐mentioned issues. The experiments conducted for characterizing travelling fires over the past two decades are reviewed, in conjunction with the current available travelling fire models. It is found that no performed travelling fire experiment records both the structural response and the mass loss rate of the fuel (to estimate the fire heat release rate) in a single test, which further implies closer collaboration between the structural and the fire engineers' teams are needed, especially for the travelling fire research topic. In addition, an overview of the development of OpenSees software framework for modelling structures in fire is presented, addressing its theoretical background, fundamental assumptions, and inherent limitations. After a decade of development, OpenSees has modules including fire, heat transfer, and thermo‐mechanical analysis. Meanwhile, it is one of the few structural fire modelling software which is open source and free to the entire community, allowing interested researchers to use and contribute with no expense. An OpenSees‐based integrated tool called SIFBuilder is developed by the author and co‐workers, which can perform fire modelling, heat transfer analysis, and thermo-mechanical analysis in one single software with an automatic coupled manner. This manner would facilitate structural engineers to apply fire loading on their design structures like other mechanical loading types (e.g. seismic loading, gravity loading, etc.), without transferring the fire and heat transfer modelling results to each structural element manually and further assemble them to the entire structure. This feature would largely free the structural engineers' efforts to focus on the structural response for performance-based design under different fire scenarios, without investigating the modelling details of fire and heat transfer analysis. Moreover, the efficiency due to this automatic coupled manner would become more superior, for modelling larger structures under more realistic fire scenarios (e.g. travelling fires). This advantage has been confirmed by the studies carried out in this research, including 29 travelling fire scenarios containing total number of 696 heat transfer analysis for the structural members, which were undertaken at very modest computational costs. In addition, a set of benchmark problems for verification and validation of OpenSees/SIFBuilder are investigated, which demonstrates good agreement against analytical solutions, ABAQUS, SAFIR, and the experimental data. These benchmark problems can also be used for interested researchers to verify their own numerical or analytical models for other purposes, and can be also used as an induction guide of OpenSees/SIFBuilder. Significantly, an extended travelling fire method (ETFM) framework is put forward in this research, which can predict the fire severity considering a travelling fire concept with an upper bound. This framework considers the energy and mass conservation, rather than simply forcing other independent models to 'travel' in the compartment (i.e. modified parametric fire curves in Clifton's model, 800°C‐1200°C temperature block and the Alpert's ceiling jet in Rein's model). It is developed based on combining Hasemi's localized fire model for the fire plume, and a simple smoke layer calculation by utilising the FIRM zone model for the areas of the compartment away from the fire. Different from mainly investigating the thermal impact due to various ratios of the fire size to the compartment size (e.g. 5%, 10%, 25%, 75%, etc.), as in Rein's model, this research investigates the travelling fire thermal impact through explicit representation of the various fire spread rates and fuel load densities, which are the key input parameters in the ETFM framework. To represent the far field thermal exposures, two zone models (i.e. ASET zone model & FIRM zone model) and the ETFM framework are implemented in SIFBuilder, in order to provide the community a 'vehicle' to try, test, and further improve this ETFM framework, and also the SIFBuilder itself. It is found that for 'slow' travelling fires (i.e. low fire spread rates), the near‐field fire plume brings more dominant thermal impact compared with the impact from far‐field smoke. In contrast, for 'fast' travelling fires (i.e. high fire spread rates), the far‐field smoke brings more dominant thermal impact. Furthermore, the through depth thermal gradients due to different travelling fire scenarios were explored, especially with regards to the 'thermal gradient reversal' due to the near‐field fire plume approaching and leaving the design structural member. This 'thermal gradient reversal' would fundamentally reverse the thermally‐induced bending moment from hogging to sagging. The modelling results suggest that the peak thermal gradient due to near‐field approaching is more sensitive to the fuel load density than fire spread rate, where larger peak values are captured with lower fuel load densities. Moreover, the reverse peak thermal gradient due to near‐field leaving is also sensitive to the fuel load density rather than the fire spread rate, but this reverse peak value is inversely proportional to the fuel load densities. Finally, the key assumptions of the ETFM framework are rationalised and its limitations are emphasized. Design instructions with relevant information which can be readily used by the structural fire engineers for the ETFM framework are also included. Hence more optimised and robust structural design under such fire threat can be generated and guaranteed, where we believe these efforts will advance the performance‐based structural and fire safety engineering.
6

Advanced modelling of multilayered composites and functionally graded structures by means of Unified Formulation / Modélisation avancée des structures composites multicouches et de matériaux à gradient fonctionnel par une formulation unifiée

Crisafulli, Daniela 11 April 2013 (has links)
La plupart des problèmes d'ingénierie des deux derniers siècles ont été résolus grâce à des modèles structuraux pour poutres, plaques et coques. Les théories classiques, tels que Euler-Bernoulli, Navier et de Saint-Venant pour les poutres, et Kirchhoff-Love et Mindlin-Reissner pour plaques et coques, ont permis de réduire le problème générique 3-D, dans le problème unidimensionnel pour les poutres et deux dimensionnelle pour les coques et les plaques. Théories raffinés d'ordre supérieur ont été proposées au cours du temps, comme les modèles classiques ne consentez pas à d'obtenir une complète domaine des contraintes et des déformations. La Carrera Unified Formulation (UF) a été proposé au cours de la dernière décennie, et permet de développer un grand nombre de théories structurelles avec un nombre variable d'inconnues principales au moyen d'une notation compacte et se référant à des nuclei fondamentales. Cette formulation unifiée permet de dériver carrément des modèles structurels d'ordre supérieur, pour les poutres, plaques et coques. Dans ce cadre, cette thèse vise à étendre la formulation pour l'analyse des structures fonctionnellement gradués (FGM), en introduisant aussi le problème thermo-mécanique, dans le cas des poutres fonctionnellement gradués. Suite à la formulation unifiée, les variables génériques déplacements sont écrits en termes de fonctions de base, qui multiplie les inconnues. Dans la deuxième partie de la thèse, de nouvelles fonctions de bases pour la modélisation des coques, qui représentent une approximation trigonométrique des variables déplacements, sont pris en compte / Most of the engineering problems of the last two centuries have been solved thanks to structural models for both beams, and for plates and shells. Classical theories, such as Euler-Bernoulli, Navier and De Saint-Venant for beams, and Kirchhoff-Love and Mindlin- Reissner for plates and shells, permitted to reduce the generic 3-D problem, in onedimensional one for beams and two-dimensional for shells and plates. Refined higher order theories have been proposed in the course of time, as the classical models do not consent to obtain a complete stress/strain field. Carrera Unified Formulation (UF) has been proposed during the last decade, and allows to develop a large number of structural theories with a variable number of main unknowns by means of a compact notation and referring to few fundamental nuclei. This Unified Formulation allows to derive straightforwardly higher-order structural models, for beams, plates and shells. In this framework, this thesis aims to extend the formulation for the analysis of Functionally Graded structures, introducing also the thermo-mechanical problem, in the case of functionally graded beams. Following the Unified Formulation, the generic displacements variables are written in terms of a base functions, which multiplies the unknowns. In the second part of the thesis, new bases functions for shells modelling, accounting for trigonometric approximation of the displacements variables, are considered.
7

Development Of An Advanced Methodology For Automotive IC Engine Design Optimization Using A Multi-Physics CAE Approach

Sehemby, Amardeep A Singh 09 1900 (has links) (PDF)
The internal combustion engine is synonyms with the automobile since its invention in late 19th century. The internal combustion engine today is far more advanced and efficient compared to its early predecessors. An intense competition exists today amongst the automotive OEMs in various countries and regions for stepping up sales and increasing market share. The pressure on automotive OEMs to reduce fuel consumption and emission is enormous which has lead to innovations of many variations in engine and engine-related technologies. However, IC engines are in existence for well more than a century and hence have already evolved to a highly refined state. Changes in IC engine are therefore largely incremental in nature. A deterrent towards development of an engine configuration that is significantly different from its predecessor is the phenomenal cost involved in prototyping. Thus, the only viable alternative in exploring new engine concepts and even optimizing designs currently in operation is through extensive use of CAE. In light of published work in the field of analysis of IC engines, current research effort is directed towards development of a rational methodology for arriving at a weight-optimized engine design, which simultaneously meets performance of various attributes such as thermal, durability, vehicle dynamics and NVH. This is in contrast to the current methodology adopted in industry, according to which separate teams work on aspects of engine design such as combustion, NVH (Noise, Vibration and Harshness), acoustics, dynamics, heat transfer and durability. Because of the involvement of heterogeneous product development groups, optimization of an engine for weight, which can have a significant impact on its power-to-weight ratio, becomes a slow process beset with manual interventions and compromise solutions. Thus, following the traditional approach, it is quite difficult to claim that an unambiguous weight-optimized design has been achieved. As a departure from the practiced approach, the present research effort is directed at the deployment of a single multi-physics explicit analysis solver, viz. LS-DYNA - generally known for its contact-impact analysis capabilities, for simultaneously evaluating a given engine design for heat transfer, mechanical and thermal loading, and vibration. It may be mentioned that only combustion analysis is carried out in an uncoupled manner, using proven phenomenological thermodynamic relations, to initially arrive at mechanical and thermal loading/boundary conditions for the coupled thermo-mechanical analysis. The proposed methodology can thus be termed as a semi-integrated technique and its efficacy is established with the case study of designing a single cylinder air-cooled diesel engine from scratch and its optimization.
8

Zhodnocení termomechanického chování perspektivních jaderných paliv při havárii s vnosem reaktivity / Assessment of the thermomechanical behaviour of perspective nuclear fuel for reactivity insertion accidents

Halabuk, Dávid January 2016 (has links)
The objective of this master’s thesis is to simulate thermo-mechanical behaviour of nuclear fuel in a pressurized water reactor during a reactivity initiated accident. An important part of this work is focused on examination of processes which occur during such accident and on creation of a detailed overview of material properties of nuclear fuel and fuel cladding which are necessary for simulations that closely reflect reality. Simulations in this thesis examine cases of fresh or irradiated nuclear fuel for two types of fuel cladding, Zircaloy-4, a material that is currently used in nuclear reactors, and ceramic matrix composite material made of SiC. The thesis also presents comparison of results with a corresponding international benchmark and an assessment of the influence of selected input parameters on obtained results.

Page generated in 0.1025 seconds