• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

WAVEFRONT MANIPULATION WITH METASURFACES BASED ON NEW MATERIALS

Sajid Choudhury (6949022) 13 August 2019 (has links)
Metasurfaces, introduced as a compact 2D alternative of metamaterials, have developed into a vast field in recent times for light manipulation at an ultra-compact scale. Metasurface applications have found a place in the literature for compact alternatives to lens, holograms, polarizers, color filters. Plasmonic metasurfaces consisting of noble metals such as gold and silver provide light confinement on an unprecedented scale. Gold and silver grown conventionally on transparent substrates are polycrystalline, and exhibit losses and limit performance of the device. Moreover, these materials have a lower damage threshold and melting point. To circumvent the lower melting point and damage thresholds, new materials, and material growing techniques need to be researched. <br>In the first part of this work, a metasurface for color holography with an epitaxially grown silver thin film on a transparent substrate is shown. The demonstrated metasurface has been the first ever epitaxial silver metasurface that operated in the transmission mode. This plasmonic hologram has also been the thinnest metasurface hologram operating in transmission mode at the time of its reporting. The holographic image of all three basic color components of red, green, and blue has been demonstrated in the transmission mode. The control of color has been achieved by resonant sub-wavelength slits and the phase can be manipulated through altering slit orientation. This amplitude and phase control pave the way to applications of ultra-compact polychromatic plasmonic metasurfaces for advanced light manipulation. In the second part, we explore temperature rise due to the optical absorption in plasmonic structures. Titanium Nitride based metasurfaces structures are fabricated, that work in harsh environmental conditions and high temperature. A time domain thermo reflectance technique for rapid measurement of temperature is explored. Finally, a practical design prototype for thermo-photovoltaic (TPV) emitters using plasmonic metasurfaces is fabricated and characterized.<br><br>
2

Conception et optimisation d'émetteurs sélectifs pour applications thermophotovoltaïques / Coherent thermal sources Design and optimization of thermophotovoltaic applications

Nefzaoui, Elyes 08 March 2013 (has links)
Le thermo-photovoltaïque (TPV), conversion du rayonnement thermique par des cellules photovoltaïques (PV), est un dispositif qui a suscité un intérêt croissant depuis deux décennies, notamment pour son efficacité supérieure à celle de la conversion photovoltaïque classique. Ceci est essentiellement dû à l'accord entre le spectre du rayonnement de la source thermique et le spectre de conversion de la cellule PV. Les rendements maximaux sont obtenus pour des sources thermiques cohérentes, émettant dans une gamme spectrale étroite, énergétiquement au-dessus de l'énergie de la bande interdite de la cellule PV. On propose dans ce travail d'appliquer une méthode d'optimisation stochastique, en l'occurrence l'optimisation par essaims de particules, pour concevoir et optimiser de telles sources. On aboutit alors à des structures unidimensionnelles simples, à base de films minces de diélectriques, métaux et de semi-conducteurs. Les propriétés radiatives de ces sources, stables pour des températures allant jusqu'à 1000 K, sont aisément contrôlables à l'aide de paramètres simples comme les épaisseurs des films ou la concentration de dopage. Finalement, on propose une étude d'optimisation paramétrique des propriétés optiques des matériaux susceptibles de maximiser l'échange radiatif en champ proche entre deux milieux plans semi-infinis. Cette étude aboutit à un outil pratique, sous forme d'abaques, permettant de guider le choix des matériaux pertinents afin de maximiser les puissances au même temps que l'efficacité des systèmes TPV nanométriques. / Thermo-photovoltaic conversion of thermal radiation is a concept that has been thoroughly investigated during the two last decades because of its high efficiency when compared to classical photovoltaics (PV). These high performances are mainly due to the good-matching between the thermal source radiation spectrum and the PV cell conversion spectrum. Maximal efficiencies areobtained with coherent sources that emit in narrow spectral bands, just above the band gap energy of the cell. In this report, a stochastic method to design and optimize such sources, the particle swarm optimization in this case, is firstly presented. This method leads to simple one-dimensional structures, composed of thin films of dielectrics, metals and semiconductors. The radiativeproperties of these sources are easily tunable with control parameters as simple as films thicknesses and doping concentrations. They are stable at high temperatures up to 1000 K. Second, a parametric optimization study of usual materials optical properties models (Drude and Lorentz) is presented in order to maximize radiative heat transfer between semi-infinite planes separated by nanometric gaps. This leads to a simple tool in the form of abacuses which would guide the choice of relevant materials to maximize the output power of nano thermo-photovoltaic devices.
3

COMBINED BOILER WITH TPV

Björk, Magnus January 2013 (has links)
A TPV-system consists of a hot surface emitting heat radiation on a solar cell with a narrow bandgap.  A unit consisting of a boiler and a TPV-system has been constructed for testing of the performance of TPV cells. The emitter is heated by a fuel consisting of RME-oil. The radiation is collected and concentrated through two reflecting cones formed like a Faberge-egg, with an edge-type optical filter between the cones. The Faberge-egg is treated with electro-polishing in order to obtain a high reflectance of radiation. The edge filter transmits radiation of short wavelengths towards the solar cells and reflects long wavelengths back to the emitter. This increase the temperature of the emitter to prevent the TPV-cells to be overheated. The construction made was working as expected and can be used for further experiments. The performance of the TPV-cells were however very poor because of a low emitter temperature. The main problem was to obtain a good heat transport from the flame to the emitter. It is required that the emitter temperature is considerably increased for justifying a continued work on TPV-systems in combination with boilers.

Page generated in 0.0413 seconds