1 |
An enquiry into gas process asymmetry in Stirling cycle machinesRix, D. H. January 1984 (has links)
No description available.
|
2 |
Thermal cycles and HAZ characteristics of single pass welds in HSLA steelsTecco, D. G. January 1985 (has links)
No description available.
|
3 |
Stirling engine thermometry and heat transferDadd, M. W. January 1985 (has links)
No description available.
|
4 |
Stirling engine heat exchanger characteristicsThonger, J. C. T. January 1986 (has links)
No description available.
|
5 |
Analysis of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrated Solar Power ApplicationsMostaghim Besarati, Saeb 31 October 2014 (has links)
Solar power tower technology can achieve higher temperatures than the most common commercial technology using parabolic troughs. In order to take advantage of higher temperatures, new power cycles are needed for generating power at higher efficiencies. Supercritical carbon dioxide (S-CO2) power cycle is one of the alternatives that have been proposed for the future concentrated solar power (CSP) plants due to its high efficiency. On the other hand, carbon dioxide can also be a replacement for current heat transfer fluids (HTFs), i.e. oil, molten salt, and steam. The main disadvantages of the current HTFs are maximum operating temperature limit, required freeze protection units, and complex control systems. However, the main challenge about utilizing s-CO2 as the HTF is to design a receiver that can operate at high operating pressure (about 20 MPa) while maintaining excellent thermal performance. The existing tubular and windowed receivers are not suitable for this application; therefore, an innovative design is required to provide appropriate performance as well as mechanical strength.
This research investigates the application of s-CO2 in solar power tower plants. First, a computationally efficient method is developed for designing the heliostat field in a solar power tower plant. Then, an innovative numerical approach is introduced to distribute the heat flux uniformly on the receiver surface. Next, different power cycles utilizing s-CO2 as the working fluid are analyzed. It is shown that including an appropriate bottoming cycle can further increase the power cycle efficiency. In the next step, a thermal receiver is designed based on compact heat exchanger (CHE) technology utilizing s-CO2 as the HTF. Finally, a 3MWth cavity receiver is designed using the CHE receivers as individual panels receiving solar flux from the heliostat field. Convective and radiative heat transfer models are employed to calculate bulk fluid and surface temperatures. The receiver efficiency is obtained as 80%, which can be further improved by optimizing the geometry of the cavity.
|
6 |
Investigação da estabilidade de fases da zircônia-escândia / Investigation of phase stability in the scandia-zirconiaGROSSO, ROBSON L. 25 August 2016 (has links)
Submitted by Marco Antonio Oliveira da Silva (maosilva@ipen.br) on 2016-08-25T17:43:02Z
No. of bitstreams: 0 / Made available in DSpace on 2016-08-25T17:43:02Z (GMT). No. of bitstreams: 0 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Nesse trabalho foi proposto investigar a estabilidade de fases do sistema zircônia-escândia (ScSZ) por meio do estudo termodinâmico de nanopartículas, na faixa de 0 a 20% em mol de Sc2O3, e a partir da introdução de um segundo aditivo (Dy2O3 e Nb2O5) ao ZrO2 contendo 10% em mol de Sc2O3 (10ScSZ). A estabilidade de fases do ScSZ foi avaliada com base em dados termodinâmicos determinados pelas técnicas de microcalorimetria de adsorção de água e calorimetria de dissolução à alta temperatura. As soluções sólidas foram sintetizadas pelo método de coprecipitação de hidróxidos. Dados termodinâmicos foram determinados para as formas polimórficas encontradas (monoclínica, tetragonal, cúbica, romboédrica β e γ) por difração de raios X no ScSZ. Esse trabalho resultou no diagrama de fases em nanoescala de tamanho de partícula-composição. Os efeitos produzidos pela introdução de aditivos na matriz de 10ScSZ foram investigados visando obter a possível estabilização da estrutura cúbica (c) e a supressão da transformação de fase c-β, característica do sistema binário. As composições foram sintetizadas por coprecipitação de hidróxidos e por reações em estado sólido para fins comparativos. Os materiais foram sinterizados convencionalmente e por sinterização assistida por campo elétrico. A estabilização completa da fase cúbica ocorreu a partir de teores molares de 1% de Dy2O3 e 0,5% de Nb2O5. O menor teor de Nb2O5 necessário para a estabilização da fase foi atribuído à provável formação da fase líquida durante a sinterização e ao menor tamanho do íon Nb5+. Os resultados de difratometria de raios X em alta temperatura e análise térmica mostraram que houve supressão da transição c-β. As amostras contendo 0,5% mol de Nb2O5 apresentaram valores de condutividade iônica similares aos do 10ScSZ sem aditivos em uma ampla faixa de temperatura com elevada estabilidade em um período de 170 h a 600 °C. / Tese (Doutorado em Tecnologia Nuclear) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP / FAPESP: 12/03319-5
|
7 |
Ab Initio Molecular Dynamics Studies of Bronsted Acid-Base Chemistry in Aqueous SolutionsTummanapelli, Anil Kumar January 2015 (has links) (PDF)
Knowledge of the dissociation constants of the ionizable protons of weak acids in aqueous media is of fundamental importance in many areas of chemistry and biochemistry. The pKa value, or equilibrium dissociation constant, of a molecule determines the relative concentration of its protonated and deprotonated forms at a specified pH and is therefore an important descriptor of its chemical reactivity. Considerable efforts have been devoted to the determination of pKa values by deferent experimental techniques. Although in most cases the determination of pKa values from experimental is straightforward, there are situations where interpretation is difficult and the results ambiguous. It is, therefore, not surprising that the capability to provide accurate estimates of the pKa value has been a central goal in theoretical chemistry and there has been a large effort in developing methodologies for predicting pKa values for a variety of chemical systems by differing quantum chemical techniques. A prediction accuracy within 0.5 pKa units of experiment is the desirable level of accuracy. This is a non-trivial exercise, for an error of 1 kcal/mol in estimates of the free energy value would result in an error of 0.74 pKa units.
In this thesis ab initio Car-Parrinello molecular dynamics (CPMD) has been used for investigating the Brϕnsted acid-base chemistry of weak acids in aqueous solution. A key issue in any dissociation event is how the solvating water molecules arrange themselves spatially and dynamically around the neutral and dissociated acid molecule. Ab initio methods have the advantage that all solvent water molecules can, in principle, be con- sidered explicitly. One of the factors that has inhibited the widespread use of ab initio MD methods to study the dissociation reaction is that dissociation of weak acids are rare events that require extremely long simulation times before one is observed. The metady- namics formalism provides a solution to this conundrum by preventing the system from revisiting regions of configuration space where it has been in the past. The formalism allows the system to escape the free-energy minima by biasing the dynamics with a history dependent potential (or force) that acts on select degrees of freedom, referred to as collective variables. The bias potentials, modeled by repulsive inverted Gaussians that are dropped during propagation, drive the system out of any free-energy minima and allow it to explore the configuration space by a relatively quick and efficient sampling. The the- sis deals with a detailed investigation of the Brϕnsted acid-base chemistry of weak acids in aqueous solutions by the CPMD-metadynamics procedure.
In Chapter 1, current approaches for the theoretical estimation of pKa values are summarized while in Chapter 2 the simulation methodology and the metadynamics sampling techniques used in thisstudy are described.
The potential of the CPMD-metadynamics procedure to provide estimates of the acid dissociation constant (pKa) is explored in Chapter 3, using acetic acid as a test sys- tem. Using the bond-distance dependent coordination number of protons bound to the dissociating carboxylic groups as the collective variable, the free-energy profile for the dissociation reaction of acetic acid in water was computed. Convergence of the free-energy profiles and barriers for the simulations parameters is demonstrated. The free-energy profiles exhibit two distinct minima corresponding to the dissociated and neutral states of the acid and the deference in their values provides the estimate for pKa. The estimated value of pKa for acetic acid from the simulations, 4.80, is in good agreement with the experiment at value of 4.76. It is shown that the good agreement with experiment is a consequence of the cancellation of errors, as the pKa values are computed as the difference in the free energy values at the minima corresponding to the neutral and dissociated state. The chapter further explores the critical factors required for obtaining accurate estimates of the pKa values by the CPMD-metadynamics procedure. It is shown that having water molecules sufficient to complete three hydration shells as well as maintaining water density in the simulation cell as close to unity is important.
In Chapter 4, the CPMD-metadynamics procedure described in Chapter-3 has been used to investigate the dissociation of a series of weak organic acids in aqueous solutions. The acids studied were chosen to highlight some of the major factors that influence the dissociation constant. These include the influence of the inductive effect, the stabilization of the dissociated anion by H-bonding as well as the presence of multiple ionizable groups. The acids investigated were aliphatic carboxylic acids, chlorine-substituted carboxylic acids, cid and trans-butenedioic, the isomers of hydroxybenzoic acid and phthalic acids and its isomers. It was found that in each of these examples the CPMD-metadynamics procedure correctly estimates the pKa values, indicating that the formulism is capable of capturing these influences and equally importantly indicating that the cancellation of errors is indeed universal. Further, it is shown that the procedure can provide accurate estimates of the successive pKa values of polypro tic acids as well as the subtle deference in their values for deterrent isomers of the acid molecule.
Changes in protonation-deprotonation of amino acid residues in proteins play a key role in many biological processes and pathways. It is shown that CPMD simulations in conjunction with metadynamics calculations of the free energy profile of the protonation- deprotonation reaction can provide estimates of the multiple pKa values of the 20 canonical α-amino acids in aqueous solutions in good agreement with experiment (Chapter 5). The distance-dependent coordination number of the protons bound to the hydroxyl oxygen of the carboxylic and the amine groups is used as the collective variable to explore the free energy profiles of the Brϕnsted acid-base chemistry of amino acids in aqueous solutions. Water molecules, sufficient to complete three hydration shells surrounding the acid molecule were included explicitly in the computation procedure. The method works equally well for amino acids with neutral, acidic and basic side chains and provides estimates of the multiple pKa values with a mean relative error with respect to experimental results, of 0.2 pKa units.
The tripeptide Glutathione (GSH) is one of the most abundant peptides and the major repository for non-protein sulfur in both animal and plant cells. It plays a critical role in intracellular oxidative stress management by the reversible formation of glutathione disulfide with the thioldisulfide pair acting as a redox buffer. The state of charge of the ionizable groups of GSH can influences the redox couple and hence the pKa value of the cysteine residue of GSH is critical to its functioning. In Chapter 6, it has been reported that ab initio Car-Parrinello Molecular Dynamics simulations of glutathione solvated by 200 water molecules, all of which are considered in the simulation. It is shown that the free-energy landscape for the protonation - deprotonation reaction of the cysteine residue of GSH computed using metadynamics sampling provides accurate estimates of the pKa and correctly predicts the shift in the dissociation constant values as compared to the isolated cysteine amino acid.
The dissociation constants of weak acids are commonly determined from pH-titration
curves. For simple acids the determination of the pKa from the titration curves using the Henderson-Hasselbalch equation is relatively straightforward. There are situations, however, especially in polypro tic acids with closely spaced dissociation constants, where titration curves do not exhibit clear inflexion and equivalence stages and consequently the estimation of multiple pKa values from a single titration curve is no longer straightfor-
ward resulting in uncertainties in the determined pKa values. In Chapter 7, the multiple
dissociation constant of the hexapeptide glutathione disulfide (GSSG) with six ionizable groups and six associated dissociation constants has been investigated. The six pKa values of GSSG were estimated using the CPMD-metadynamics procedure from the free-energy profiles for each dissociation reaction computed using the appropriate collective variable. The six pKa values of GSSG were estimated and the theoretical pH-titration curve was then compared with the experimentally measured pH-titration curve and found to be in excellent agreement. The object of the exercise was to establish whether interpretation of pH-titration curves of complex molecules with multiple ionizable groups could be facilitated using results of ab initio molecular dynamics simulations.
|
8 |
Posouzení chladícího a topného faktoru reálného TČ / Assessment of cooling and heating factor of real heat pumpTupcová, Tereza January 2016 (has links)
The diploma thesis deals with the issue of replacement of non-ecological refrigerant R22 according to the requirements of relevant juristic regulations and of subsequent influence of this replacement to the efficiency of air conditioning systems. The theoretical part is focused on proceeding processes in thermodynamic cycles and during heat transfer, then determines calculation of cooling and heating factor in context with experimental measurement. The experimental measurement utilizes to the assessment of operation of heat pump after refrigerant replacement and it is source for the composion of economical evaluation of alternative solutions due to the particular choice of refrigerant replacement.
|
Page generated in 0.0548 seconds