• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of an 'artificial human' for clothing research

Psikuta, Agnieszka January 2009 (has links)
The clothing is the closest envelope of the human body, and hence, has the primary im-pact on thermal comfort, physiological response of the human body and environmental strain. On the other hand, the clothing microenvironment is affected by physiological reactions (sweating, temperature distribution, body movement). Nowadays, thermal sweating manikins used to study the interactions of the body-clothing-environment system are unable to simulate adequately the spatial and transient thermal behaviour of the human body. Ideally, a human simulator should ‘feel’ and re-spond dynamically to the thermal environment as real humans do. In this work thermal sweating devices were coupled with the iesd-Fiala multi-node model of human physiology and thermal comfort. The coupling procedure was first de-veloped for the iesd-Fiala model and a single-sector cylinder Torso. A new single-sector thermophysiological human simulator reproduced adequately the overall physiological response of the average human, which was proved by comparison with results of human subject tests for a wide range of environmental conditions. In the next step, the elaborated coupling method was applied to the multi-sector, ana-tomically-shaped thermal sweating manikin SAM. The multi-sector thermophysiologi-cal human simulator with homogenous surface temperature distribution reproduced the thermal behaviour observed in human subject tests with good accuracy. However, an attempt to advance this human simulator to one with a heterogeneously distributed sur-face temperature was unsuccessful, as the results predicted by the simulator differed greatly from those obtained from human subject tests. The single-sector physiological simulator has been shown to perform well in the valida-tion tests with use of clothing ensembles. Time saving testing, repeatability of the measurement of the physiological response of an average individual and the ability of testing in conditions unsafe for humans are major advantages of this human simulator.
2

Multi-sector thermophysiological head simulator for headgear research

Martínez Guillamón, Natividad 07 March 2016 (has links)
[EN] Predicting thermal comfort perceived during wearing protective clothing is important especially for the head as it is one of the most sensitive body parts to heat. Since helmets typically induce an additional thermal insulation that impairs the heat dissipation from the head, a special attention should be drawn to a heat strain leading to a decrease of the cognitive performance and to adverse health effects. Thermal manikins allow systematic analysis of the heat and mass transfer properties of protective clothing. However, this methodology does not provide sufficient information about the local and the whole body human physiological response in different cases of use. The prediction of the physiological state of the body is provided by a thermophysiological model. However, they are not capable of accounting for complex heat and mass exchange processes at the skin surface when the clothing is worn. Thermal devices could measure the overall effect of these processes when wearing the given actual gear and being exposed to the surrounding environment. Several attempts to couple thermal manikins with physiological models have been undertaken, however, the partial coupling of a body part manikin with a physiological model has not been addressed so far. Hence, the aim of this work was to develop a novel thermophysiological human head simulator for headgear evaluation based on the coupling of a thermal head manikin with a thermophysiological model. This method would be able to realistically reproduce the effect of clothing on the heat and mass transfer from the head's skin to the environment. A thermal head manikin with a dedicated segmentation for headgear testing was evaluated for the thermophysiological human head simulator. This head manikin showed consistent when compared to previously published data of a less segmented head manikin and the more detailed investigation of the local heat transfer at head brought additional information regarding the contribution of the local design characteristics of the headgear to the overall heat exchange. The thermal head manikin was evaluated in the most demanding scenarios according to the human physiology. It was possible to consistently define four head parts, namely, forehead, cranial, face and neck parts. When heterogeneous surface temperature distribution was applied on the head manikin, the gradients between head parts could compromise the precision of skin temperature prediction at forehead and face. The passive heating and cooling responsiveness of the head manikin did not present any limitation for simulating sudden temperature step changes. However, when the manikin heating and cooling processes were modulated by the PI control with default settings, the time needed to reach the temperature set point was larger than the time required by the human physiology. The thermophysiological model was validated for prediction of global and local skin temperatures by comparing simulations against human experimental data in a wide range of conditions. The physiological model showed a good precision in general when predicting core and mean skin temperature. A reduced precision was observed for some local skin temperatures. Finally, the thermal head manikin and the physiological model were coupled to build up the thermophysiological head simulator. The comparison of the prediction of the coupled system with human experimental data in several scenarios showed a good agreement for rectal and mean skin temperatures. However, some greater discrepancy was observed for forehead temperature in exposures in which participants were exercising in warm environments. The representation of the human sweat evaporation could be affected by a reduced evaporation efficiency and manikin sweat dynamics. The industry will benefit from this thermophysiological human head simulator, which will lead to the development of helmet designs with enhanced thermal comfort, and therefore, with higher acceptance by users / [ES] Poder predecir el confort térmico durante el uso de indumentaria de protección es muy relevante especialmente en el caso de la cabeza, ya que es una de las partes más sensibles del cuerpo al calor. Los cascos y otros elementos de protección frente a impactos incorporan un aislamiento adicional que di-ficulta la disipación de calor en la cabeza. Los maniquís térmicos permiten analizar de manera sistemática las propiedades de transferencia de calor y humedad de la indumentaria de protección. Sin embargo, esta metodología no permite inferir la respuesta fisiológica del usuario cuando utiliza la prenda. Existen modelos termofisiológicos que permiten predecir la respuesta térmica humana pero presentan algunas limitaciones cuando se representan los procesos de transferencia de calor y humedad a través de la ropa. En este caso, un maniquí térmico podría cuantificar el intercambio real de calor que se pro-duce con el ambiente térmico cuando se viste una determinada prenda. Existen experiencias en las que un maniquí de cuerpo completo ha sido acoplado con un modelo termofisiológico. Sin embargo, el acoplamiento de un maniquí que representa únicamente una parte del cuerpo con un modelo de la fisiología humana no ha sido llevado a cabo hasta ahora. Por lo tanto, el objetivo de este trabajo ha sido desarrollar una nueva metodología para evaluar cascos y equipos de protección para la cabeza basándose en el acoplamiento de un maniquí térmico de cabeza con un modelo fisiológico. Un maniquí térmico de cabeza ha sido evaluado para ser acoplado con un modelo termofisiológico. Sus medidas fueron consistentes con resultados anteriormente publicados realizados con un maniquí en menos seccionado. Este nuevo maniquí introdujo información adicional sobre la contribución en particular de las distintas características de diseño del casco al intercambio de calor global. El maniquí térmico de cabeza fue evaluado en los escenarios más extremos identificados para la fisiología humana. Se pudo identificar cuatro partes en el sistema acoplado, frente, cráneo, cara y cuello. En el caso de simular una distribución heterogénea de temperatura, los gradientes generados entre las diferentes partes podrían comprometer la precisión en la predicción de la temperatura de la piel en la frente y la cara. La capacidad pasiva de calentamiento y enfriamiento del maniquí de cabeza no supuso ninguna limitación para simular los cambios súbitos de temperatura de la piel pero cuando el control PI del maniquí moduló los procesos de calentamiento y enfriamiento, el tiempo necesario para alcanzar la temperatura de consigna fue mayor que el tiempo de reacción observado en la fisiología humana. Las predicciones de temperatura obtenidas con el modelo de la fisiología humana fueron validadas mediante la comparación con datos humanos experimentales. En general, el modelo mostró buena precisión para la predicción de la temperatura interna y la temperatura media de la piel. Sin embargo, la precisión observada fue menor para la predicción de algunas temperaturas locales. El maniquí térmico de cabeza y el modelo termofisiológico fueron acoplados. La comparación de las predicciones del sistema acoplado con datos humanos experimentales en diferentes escenarios mostró concordancia para la temperatura rectal y media de la piel. No obstante, se observó una mayor discrepancia en la predicción de la temperatura de la frente si se comparaba las simulaciones obtenidas con el modelo por sí solo y con el sistema acoplado en escenarios en los que los participantes realizaban actividad física ambientes cálidos. La representación de la evaporación del sudor humano en el sistema acoplado podría estar condicionada por una menor eficiencia en la evaporación y la respuesta dinámica de la sudoración del maniquí. La industria se podrá beneficiar de este sistema para avanzar en el desarrollo de nuevos productos que proporcionen / [CAT] Poder predir el confort tèrmic durant l'ús d'indumentària de protecció es especialment rellevant en el cas del cap, ja que és una de les parts més sensibles del cos a la calor. Els cascs incorporen un aïllament adicional que dificulta la dissipació de la calor al cap. Aquest fet és particularment dramàtic quan l'estrès tèrmic afecta negativament a la funció cognitiva i té efectes negatius sobre la salut. Els maniquins tèrmics permeten analitzar de manera sistemàtica les propietats tèrmiques de la indumentària de protecció. No obstant, aquesta metodologia no permet inferir la resposta fisiològica de l'usuari quan utilitza la indumentària. En l'actualitat existixen models matemàtics que permeten predir l'estat fisiològic del cos humà però presenten algunes limitacions quan es tracta de simular els complexos processos de transferència de calor i humitat que ocorren amb roba. En aquest cas, un maniquí tèrmic podria quantificar l'intercanvi real de calor que es produïx en l'ambient tèrmic quan es porta una determinada roba. Existixen experiències prèvies en les que un maniquí de cos complet ha sigut acoblat en un model de la fisiologia humana. No obstant, l'acoblament d'un maniquí que representa únicament una part del cos en un model de la fisiologia humana no ha sigut dut a terme fins ara. Per tant, l'objectiu d'aquest treball es desenvolupar una nova metodologia per a evaluar cascs i indumentària de protecció per al cap basada en l'acoblament d'un maniquí tèrmic de cap amb un model fisiològic. Un maniquí tèrmic de cap ha sigut valorat per a ser acoplat en un model de la fisiologia humana. Les mesures del maniquí van ser consistents amb els resultats publicats en maniquís menys seccionats. Aquest maniquí tèrmic de cap introduix informació adicional sobre la contribució particular de les dife-rents característiques del disseny dels cascs a l'intercanvi de calor global. El maniquí tèrmic de cap ha sigut valorat en els escenaris més extrems identificats per la fisiologia hu-mana. Es van poder identificar quatre parts al sistema acoblat, front, crani, cara i coll. En el cas de simular una distribució heterogènia de temperatura en la superfície del maniquí de cap, els gradients generats entre les diferents parts podria comprometre la precisió en la predicció de la temperatura de la pell en el front i la cara. La capacitat passiva de calfament i refredament del maniquí de cap no va suposar ninguna limitació per simular els canvis sobtats de temperatura de la pell observats en la fisiologia humana. No obstant, quant el control PI del maniquí modulà els processos de calfament i refredament, el temps necessari per alcançar la temperatura de consigna va ser major que el temps de reacció observat en la fisiologia humana. Les prediccions de temperatura obtingudes en el model de la fisiologia humana previst per formar part del sistema acoblat van ser validades amb dades humanes experimentals. En general, el model va mostrar una bona precisió en la predicció de la temperatura interna i la temperatura mitjana de la pell. No obstant, la precisió va ser menor en la predicció de las temperaturas locals. El maniquí tèrmic de cap i el model de la fisiologia humana van ser acoblats. La comparació de les prediccions del sistema acoblat amb dades humanes experimentals mostraren concordança en el cas de la temperatura rectal i mitjana de la pell. No obstant, s'observà una major discrepància en la predicció de la temperatura del front quant es comparaven les simulacions obtingudes en el model per sí mateix i el sistema acoblat en escenaris en els quals els participants realitzaven activitat física en am-bients càlids. La representació de l'evaporament del suor humà en el sistema acoblat podria estar con-dicionada per una menor eficiència en l'evaporament. La indústria es podra beneficiar d'aquest sistema per a avançar en el desenvolupament de nous productes que proporcione / Martínez Guillamón, N. (2016). Multi-sector thermophysiological head simulator for headgear research [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/61487 / TESIS
3

Vliv textilní membrány na dynamiku změn fyziologických ukazatelů zátěže / Impact textile membranes on the dynamics of changes physiological indicators of workload

Funfálek, Tomáš January 2015 (has links)
Title: Impact textile membranes on the dynamics of changes physiological indicators of workload Goals: Compare measurements of clothing technical parameters and laboratory measurement workload in this outfit. Describe and explain the relationship between the results of the technical and functional measurements and physiological issues associated with the use of different textile membranes during a workout. Method: Laboratory quantitative measurement of selected physiological parameters, clothings technical parameters, skin temperature and subjective perception of thermophysiological comfort. Subsequent comparative analysis of measurement results. Key words: clothes, textile membranes, workload, oxygen consuption (VO2), thermophysiological comfort, sweat, clothing physiology
4

Termofysiologisk komfort : En studie där värmeisolering och fukttransportegenskaper undersöks i alternativa materialval än de konventionella för tillämpning i underställ / Thermophysiological comfort

Hollén, Moa, Westerlund, Filippa January 2023 (has links)
Funktionskläder utgör idag en stor marknad över hela världen med stigande efterfrågan där syntetiska material står för en betydande andel av de producerade textilierna. Ett plaggs totala miljöpåverkan kan till stor del härledas till materialvalet. Materialkompositionen i underställ består ofta av blandningar av textila fibrer, vilket komplicerar återvinningsprocessen och gör den nästintill omöjlig. För att kunna 'sluta cirkeln' måste innovativa textila lösningar tas fram för att styra textilindustrin i rätt riktning. Studien undersöker alternativa fibrer och jämför dem med de konventionella för textilier till underställ där man vill uppnå god fukttransport och värmeisolering. Vidare kartläggs materialens användningsområden för att skapa ett mångsidigt funktionsplagg och därmed möjliggöra en klimatsmartare garderob. Studien identifierar och jämför de termofysiologiska egenskaperna hos materialen bambuviskos, merinoull, Tencel, PCM och Coolmax. Textilprover stickades i hundraprocentiga materialkompositioner med en utvald trikåbindning i en rundsticksmaskin. Textilprovets termofysiologiska egenskaper utvärderades med hjälp av testutrustningarna Hudmodellen och WickView för att bestämma värmemotstånd och fukttransport. Därefter analyserades resultaten på materialens termofysiologiska komfort för att sedan kartlägga deras användningsområde baserat på aktivitetsnivå och omgivningsfaktorer. Resultaten från studien indikerar att merinoull och Coolmax kan rekommenderas för användning i underställ där både värmeisolering och fukttransport är viktiga, där merinoull är mest lämplig för kalla klimat. Vidare kan bambuviskos och Tencel vara lämpliga alternativ för användning i underställ vid aktiviteter av måttlig intensitet i varierande klimatförhållanden. PCM, med sitt låga värmemotstånd och medelhöga fukttransport, gör materialet mindre lämpligt för underställ. Testresultaten från studien ger insikt i materialens termofysiologiska komfort, men bör inte ses som en heltäckande bild av denna komfort. För att erhålla en mer valid slutsats krävs ytterligare tester och beaktande av fler faktorer. / Functional clothing represents a significant global market with rising demand today, where synthetic materials account for a considerable proportion of the textiles produced. A garment's total environmental impact can largely be traced back to the choice of material. The material composition of base layers often consists of mixtures of textile fibers, which complicates the recycling process and makes it almost impossible. To 'close the loop', innovative textile solutions must be developed to steer the textile industry in the right direction. The study investigates alternative fibers and compares them with conventional ones for textiles in base layers where effective moisture transport and heat insulation are sought. Furthermore, the areas of use for these materials are mapped out to create a versatile functional garment, thereby enabling a more climate-smart wardrobe. The study identifies and compares the thermophysiological properties of the materials bamboo viscose, merino wool, Tencel, PCM, and Coolmax. Textile samples were knitted in 100% material compositions using a selected tricot stitch on a circular knitting machine. The thermophysiological properties of the textile samples were evaluated using the Skin Model and WickView testing equipment to determine heat resistance and moisture transport. Afterwards, the results on the materials' thermophysiological comfort were analyzed, and their areas of use were mapped out based on activity level and environmental factors. The results from the study indicate that merino wool and Coolmax can be recommended for use in base layers where both heat insulation and moisture transport are important, with merino wool being most suitable for cold climates. Furthermore, bamboo viscose and Tencel could be suitable alternatives for use in base layers for activities of moderate intensity in varying climate conditions. PCM, with its low heat resistance and medium-high moisture transport, makes the material less suitable for base layers. The test results from the study provide insight into the materials' thermophysiological comfort but should not be seen as a comprehensive picture of this comfort. To obtain a more valid conclusion, additional tests and consideration of more factors are required.
5

Propojení tepelného manekýna s termofyziologickým modelem člověka / Coupling of Thermal Manikin with Human Thermophysiological Model

Doležalová, Veronika January 2019 (has links)
thermal manikin, thermophysiological model, thermal comfort, climatic chamber, clothing thermal resistence

Page generated in 0.0971 seconds