• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vývoj metody termoporozimetrie polymerních prášků / Development of method thermoporosimetry polymer powders

Urbánková, Radka January 2012 (has links)
Thermoporosimetry is a technique to determine small pore sizes based on melting and crystallization point depression. The temperature shift was measured by Differential Scanning Calorimetry (DSC). Development of thermoporosimetry was carried out on silica with a well-characterized narrow pore size distribution. Several parameters were studied, which a have a direct influence on melting and crystallization point depression (for example: a quality of the solvent, filling the pores with the solvent, time and frequency of centrifuging, superfluous solvent removal conditions, etc.). The optimum conditions for the thermoporosimetry method were developed using high porosity silica. The optimized experimental conditions found for silica were applied to polypropylene powder with much lower porosity. Several polypropylene powders were synthesized using different polymerization catalysts and their porosity determined. Polymer powder morphology and structure was characterized by standard methods. Powder porosity obtained by thermoporometry, gas sorption, and BET methods was compared.
2

Inverkan av olika joner och jonconcentrationer på porstorleksfördelningen i trämassa-fibrer / The influence of different ions and ionconcentrations on pore size distribution in woodfibers

Becker, Sebastian January 2011 (has links)
The basic ingredient of paper is the individual wood fibers. The property of the fibers depends on a variety of factors e.g., method of pulp production and processing. The final sheet quality depends in part on how the fibers interface between each other and therefore factors that affect the fiber size are of interest. The flexibility of the fibers depends in part on the pore water i.e., the fiber swelling. The sheet becomes less flexible at low water content which gives a loss in strength. Thus it becomes desirable to increase the water uptake. The experimental investigation described in this report consists of exposing the wood fibers to different ions and ionic strength and then measure the pore size by thermoporosimetry where a DSC (Differential Scanning Calorimeter) is used. DSC measures the freezing point of water in the pores of the wood fibers. As the freezing point varies with the pore size the size distribution can be determined. The results show that there are complications with thermoporosimetry measurements at different ion concentrations. The strength of the ionic solutions will contribute to a fictitious pore volume, which makes analysis difficult to interpret.

Page generated in 0.0748 seconds