• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantification of Protein Adhesion Strength to Surface Attached Poly (N- isopropylacrylamide) Networks by Hydrodynamic Detachment Shear Stresses

Sanden, Gulnur 04 November 2014 (has links)
Stimuli responsive coatings offer a versatile method by which to manipulate interfacial interactions of proteins in a desired way. However, there exists little guidance as to how the structure of a responsive polymer coating influences adsorption of proteins. In this dissertation, the adsorption behavior of immuglobulin G (IgG) on poly (N-isopropylacryamide) (PNIPAAm) hydrogel coatings was investigated as a function of film thickness. PNIPAAm exhibits a hydrophilic to hydrophobic transition above a critical temperature of ~32°C in aqueous solutions. In this research, through the use of quartz crystal microbalance with dissipation (QCM-D) it was observed that the adsorption was thickness dependent and became non-reversible as the temperature was decreased. Interestingly, QCM-D results also suggested a similar amount of protein adsorption on both hydrated and dehydrated PNIPAAm surfaces. A rigid film analysis using Sauerbrey equation revealed a multi-layer formation on the collapsed PNIPAAm coatings. Although it is allegedly reported that PNIPAAm favors adsorption above the critical temperature due to hydrophobic interactions, there have been several studies that reported adsorption of proteins below the critical temperature. To better understand the QCM-D results, hydrodynamic shear force assays in a spinning disk configuration were performed in order to quickly measure and quantify adhesion of polystyrene (PS) probe spheres (10μm) to the PNIPAAm coatings in both the solvated (hydrophilic) and collapsed (hydrophobic) state. The influence of polymer coating thickness, polymer chain cross-link density, microsphere concentration and adsorption time on the adhesion characteristics of the coatings was investigated in relation with volume phase transition of the polymer coatings. A series of experiments on quantification of the temperature dependent adhesion of proteins adsorbed on surface attached PNIPAAm coatings of thicknesses was performed as the surface chemistry was switched from hydrophilic to hydrophobic. First, adhesion of polystyrene (PS) microspheres on PNIPAAm coatings was quantified in order to have a guideline for temperature dependent adhesion performance of these coatings. PS particles were subjected to a range of detachment shear stresses through hydrodynamic flow in a spinning disk configuration. These experiments provide an indirect method to determine the force of adhesion since it is proportional to the hydrodynamic force. Model protein, IgG, was then linked to PS microspheres and the mean adhesion strength of the IgG coated PS microspheres were determined through the detachment shear stresses. The influence of PS deposition time, PS bead concentration, PNIPAAm coating thickness and PNIPAAm cross-link density on the adhesion strength were addressed. The results indicated that in the collapsed state, the adhesion of bare hydrophobic PS microspheres depends strongly on coating thickness. For hydrophilic charged PS microspheres the adhesion was always higher on the hydrated PNIPAAm surfaces and appeared not to be strongly affected by the increase in PNIPAAm coating thickness. The adhesion of IgG was higher on the collapsed PNIPAAm surfaces and the adhesion trend did not significantly change as the PNIPAAm film thickness was increased. For PNIPAAm coatings with the cross-link density reduced by factor of 10, the adhesion was again higher on the collapsed PNIPAAm surface and scaled linearly with thickness. Moreover, the influence of thickness became prominent at the higher thickness values (165 nm-185 nm). In addition, the adhesion of carboxylated microspheres on PNIPAAm did not reach equilibrium and increased linearly with microsphere deposition time. A study on the sensing characteristics of PNIPAAm coatings in response to heavy metal ions was also conducted in this dissertation. The temperature-dependent swelling behavior of poly(N-isopropylacrylamide) and tripeptide Gly-Gly-His/poly(NIPAAm) conjugate hydrogel coatings were investigated using a quartz crystal microbalance with dissipation (QCM-D) while in contact with NaCl, ZnCl2, NiCl2, and CuCl2 solutions. To fabricate the tripeptide conjugated gels, precursor gels of poly(NIPAAm-co-3-aminopropylmethacrylamide[3.5 mole%]) were synthesized via free radical polymerization. The metal binding tripeptide, Gly-Gly-His, was subsequently synthesized in the gel via a Merrifield solid phase peptide synthesis (SPPS) technique, in which the amino group of the copolymer gel provided a functional site to support peptide synthesis. It was found that the logarithm of the transition temperature of the tripeptide Gly-Gly-His/poly(NIPAAm) conjugate hydrogel was proportional to the ionic strength, showing two distinct regions at low and high ionic strengths for the divalent ions. In the low ionic strength regime, the salting out constants were 0.08 M-1, 0.07 M-1, and 0.06 M-1 for Cu2+, Ni2+, and Zn2+, respectively, which follows the known trend for binding of the ions to Gly-Gly-His. In the high ionic strength region, when the metal-ion binding sites in the tripeptide conjugate hydrogel were saturated, the salting out constants were similar to the salting out constants associated with pure poly(NIPAAm).
2

Poly-N-isopropylacrylamide-based Thermoresponsive Hydrogels for Retinal Pigment Epithelial Cell Delivery

Amaral, Nicole January 2021 (has links)
Despite being the most prevalent presentation of Age-Related Macular Degeneration (AMD), dry AMD (dAMD) lacks a therapeutic treatment. Retinal pigment epithelium (RPE) dysfunction preceding the onset of dAMD has inspired interest in regenerative medicine approaches seeking to replenish the RPE and preserve visual acuity. Cell delivery to the subretinal space however has been met with challenges surrounding ease of access and invasive surgical implantation. Two-dimensional scaffolds have made use of natural and polymeric materials to act as carriers for RPE cells and various progenitor lines. These substrates mitigate issues surrounding the handling of delicate cell sheets harvested for transplant. As well, they are often successful in preserving RPE phenotype, supporting growth, and can be fine tuned to possess morphologies comparable to native extracellular matrix (ECM). Despite aiming to act as replacement Bruch’s membrane on which RPE resides, two-dimensional substrates are often notably bulky and require traumatic surgery for implantation. As a result, the use of injectable methods of cell delivery has gained appeal. Bolus injections, despite improved methods of administration, are correlated with issues of inadequate cell localization. In response, three-dimensional hydrogel carriers for retinal applications aim to encapsulate cells, allowing for better cell distribution as these materials spread throughout the subretinal space. Increased viscosity of hydrogels as compared to saline injections, is hypothesized to improve cell loss and reduce aggregation. Of particular interest are in situ gelling systems, which undergo physical changes upon injection. Gelation upon delivery works to further assist in maintaining the cells within their target site. Purity and reproducibility concerns associated with the use of natural materials in the development of hydrogel cell carriers, have inspired the use of synthetic thermoresponsive poly-N-isopropylacrylamide (pNIPAAm). pNIPAAm undergoes a liquid to gel transition at a lower critical solution temperature (LCST) of 32°C. Copolymerization with various hydrophobic and hydrophilic groups can be used to adjust gel properties such as increasing or decreasing LCST, allowing for degradation, and improving water retention. In the work described herein, two NIPAAm-based thermoresponsive hydrogels intended for use as subretinal cell carriers are proposed. / Thesis / Master of Applied Science (MASc)
3

Design of carbon based structures for electrochemical applications / Mise en forme de structures à base de carbone pour des applications électrochimique

Phuakkong, Oranit 07 December 2016 (has links)
Dans cette thèse nous avons étudié la mise en forme de matériaux carbonés par des méthodes électrochimiques pour des applications dans les domaines des capteurs et de l’énergie. Dans la première partie, l’électrochimie bipolaire, qui permet de réaliser des réactions électrochimiques sur un objet conducteur présent dans une solution et soumise à un champ électrique, a été utilisée pour générer des objets de type Janus. Ces objets asymétriques ont été modifiés à une extrémité par du poly(N-isopropylacrylamide (pNIPAM), un hydrogel sensible à la température, et par une peinture électrophorétique à l’autre extrémité. En contrôlant l’intensité du champ électrique ainsi que son temps d’application il a été possible de varier la longueur ainsi que l’épaisseur de l’hydrogel. Ces objets sensibles à la température, émettant de la lumière, ont des applications potentielles dans le domaine des capteurs ou dans le milieu médical.Dans la seconde partie, la mise en forme de carbone poreux pour des applications électrochimiques a été étudiée. La carbonisation de polymères contenant du zinc a été utilisé pour synthétiser du carbone micro/mésoporeux possédant ainsi une grande surface spécifique. Les polymères contenant du zinc ont été préparés à partir de différents types de ligands d’acide dicarboxylique par une méthode solvothermique. Ils ont ensuite été carbonisés pour obtenir des matériaux poreux avec des caractéristiques et des propriétés particulières. Ils ont été utilisés comme matériaux d’électrode pour des supercondensateurs, montrant des capacités élevées. De plus ils possèdent également une activité électrocatalytique à la réaction de réduction de l’oxygène. / In this thesis, the design of advanced carbon materials via electrochemical techniques and for electrochemical applications have been studied. In the first part, the concept of bipolar electrochemistry, which allows carrying out electrochemical reactions on a free-standing conductive object in an electric field, was employed to generate Janus-type objects. These objects are modified with a thermoresponsive hydrogel of poly(N-isopropylacrylamide) (pNIPAM) on one side and an electrophoretic deposition paint (EDP) on the other side. The results show that the length and the thickness of the hydrogel can be controlled by varying the electric field and the time of the experiment. The concept can be further generalized to other micro- and nanometer-sized objects, thus opening up perspectives for various applications.In the second part, the design of porous carbon structures for electrochemical applications was studied. The direct carbonization of non-porous zinc containing polymers was used to synthesize micro/mesoporous carbons with high surface area, pore volume. Non-porous zinc containing polymers with various types of dicarboxylic acid ligands prepared by solvothermal method were used as templates and starting materials. After carbonization porous carbons with various characteristics and properties were obtained. The synthesized porous carbon samples showed good electrochemical performance with high capacitance values. In addition, the derived materials exhibit excellent electrocatalytic activity with respect to the oxygen reduction reaction (ORR).

Page generated in 0.0908 seconds