• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 3
  • Tagged with
  • 13
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Thermosensibilité de la demande électrique : identification de la part non linéaire par couplage d'une modélisation bottom-up et de l'approche bayésienne / Temperature sensitivity of electricity demand : identification of the non linear part by coupling a bottom-up model and bayesian approach

Özkizilkaya, Özlem 12 December 2014 (has links)
La croissance du marché des pompes à chaleur contribue à l'augmentation de la thermosensibilité de la demande électrique. Il devient nécessaire de mieux comprendre l'impact des usages thermosensibles de l'électricité, notamment concernant ceux qui sont corrélés de manière non linéaire à la température extérieure. Dans cette optique, cette thèse vise à construire un cadre de modélisation qui permette i) d'analyser les facteurs d'influence de la thermosensibilité à partir d'une description physique des usages thermosensibles, et ii) de réaliser des diagnostics de ces paramètres d'influence tout en tenant compte des incertitudes associées. Une approche de modélisation hybride qui bénéficie des avantages de modèles statistiques et de modèles physiques est principalement employée pour répondre à ces questions.La première étape consiste à estimer la part thermosensible de la demande réelle par un modèle prédictif top-down. On développe ensuite un modèle d'analyse physique de la thermosensibilité à l'échelle régionale à partir de la thermique du bâtiment. On s'appuie notamment sur des modèles pseudo-physiques de performance de pompes à chaleur qui sont régressés sur des données constructeur ou des mesures de performances réelles. Un COP régional est déterminé pour l'ensemble des PAC installées. Enfin, les paramètres d'influence du modèle de thermosensibilité ainsi développé sont estimés à l'aide de l'approche bayésienne, qui offre un cadre pour le traitement de l'incertitude sous la forme de probabilités. Des coefficients équivalents de déperditions thermiques, une température intérieure équivalente ainsi que les parts du chauffage Joule et par PAC pour le parc de bâtiments régional ont été obtenus. / The growing heat pump market contributes to the increase in temperature sensitivity of electricity demand. It becomes necessary to understand the impact of temperature sensitive end-uses of electricity, including those which are correlated non-linearly to the outside temperature. In this context, this thesis aims to build a modeling framework to i) analyze the influencing factors of the temperature sensitivity of electricity demand from a physical description of temperature-sensitive equipment, and ii) to perform diagnoses of these parameters of influence by taking into account the associated uncertainties. A hybrid modeling approach that benefits the advantages of statistical models and physical models is used to answer these questions.Firstly, the temperature-sensitive part of electricity demand is estimated by a predictive top-down model. Then a physical model to analyze the temperature sensitivity at regional level is developed based on building thermal energy needs. A regional coefficient of performance (COP) is determined for the whole installed heat pumps by using pseudo-physical models which are regressed on manufacturer data or actual performance measures. Finally, the parameters of influence of the developed temperature sensitivity model are estimated using the Bayesian approach which provides a framework for the treatment of uncertainty in the form of probabilities. Equivalent coefficients of heat loss, an equivalent internal temperature, as well as the share of Joule heating and the share of heat pumps for the regional building stock are obtained.
12

Formation et propriétés des cristaux colloïdaux issus de l’auto-assemblage de microsphères de polymère

Bazin, Gwénaëlle 04 1900 (has links)
Le besoin pour des biocapteurs à haute sensibilité mais simples à préparer et à utiliser est en constante augmentation, notamment dans le domaine biomédical. Les cristaux colloïdaux formés par des microsphères de polymère ont déjà prouvé leur fort potentiel en tant que biocapteurs grâce à l’association des propriétés des polymères et à la diffraction de la lumière visible de la structure périodique. Toutefois, une meilleure compréhension du comportement de ces structures est primordiale avant de pouvoir développer des capteurs efficaces et polyvalents. Ce travail propose d’étudier la formation et les propriétés des cristaux colloïdaux résultant de l’auto-assemblage de microsphères de polymère en milieu aqueux. Dans ce but, des particules avec différentes caractéristiques ont été synthétisées et caractérisées afin de corréler les propriétés des particules et le comportement de la structure cristalline. Dans un premier temps, des microsphères réticulées de polystyrène anioniques et cationiques ont été préparées par polymérisation en émulsion sans tensioactif. En variant la quantité de comonomère chargé, le chlorure de vinylbenzyltriméthylammonium ou le sulfonate styrène de sodium, des particules de différentes tailles, formes, polydispersités et charges surfaciques ont été obtenues. En effet, une augmentation de la quantité du comonomère ionique permet de stabiliser de façon électrostatique une plus grande surface et de diminuer ainsi la taille des particules. Cependant, au-dessus d’une certaine concentration, la polymérisation du comonomère en solution devient non négligeable, provoquant un élargissement de la distribution de taille. Quand la polydispersité est faible, ces microsphères chargées, même celles non parfaitement sphériques, peuvent s’auto-assembler et former des cristaux colloïdaux diffractant la lumière visible. Il semble que les répulsions électrostatiques créées par les charges surfaciques favorisent la formation de la structure périodique sur un grand domaine de concentrations et améliorent leur stabilité en présence de sel. Dans un deuxième temps, le besoin d’un constituant stimulable nous a orientés vers les structures cœur-écorce. Ces microsphères, synthétisées en deux étapes par polymérisation en émulsion sans tensioactif, sont formées d’un cœur de polystyrène et d’une écorce d’hydrogel. Différents hydrogels ont été utilisés afin d’obtenir des propriétés différentes : le poly(acide acrylique) pour sa sensibilité au pH, le poly(N-isopropylacrylamide) pour sa thermosensibilité, et, enfin, le copolymère poly(N-isopropylacrylamide-co-acide acrylique) donnant une double sensibilité. Ces microsphères forment des cristaux colloïdaux diffractant la lumière visible à partir d’une certaine concentration critique et pour un large domaine de concentrations. D’après les changements observés dans les spectres de diffraction, les stimuli ont un impact sur la structure cristalline mais l’amplitude de cet effet varie avec la concentration. Ce comportement semble être le résultat des changements induits par la transition de phase volumique sur les interactions entre particules plutôt qu’une conséquence du changement de taille. Les interactions attractives de van der Waals et les répulsions stériques sont clairement affectées par la transition de phase volumique de l’écorce de poly(N-isopropylacrylamide). Dans le cas des microsphères sensibles au pH, les interactions électrostatiques sont aussi à considérer. L’effet de la concentration peut alors être mis en relation avec la portée de ces interactions. Finalement, dans l’objectif futur de développer des biocapteurs de glucose, les microsphères cœur-écorce ont été fonctionnalisées avec l’acide 3-aminophénylboronique afin de les rendre sensibles au glucose. Les effets de la fonctionnalisation et de la complexation avec le glucose sur les particules et leur empilement périodique ont été examinés. La structure cristalline est visiblement affectée par la présence de glucose, même si le mécanisme impliqué reste à élucider. / The need for biosensors with high sensibility but simple preparation and use has been increasing, especially in the biomedical field. Crystalline colloidal arrays (CCAs) formed by polymer microspheres have already demonstrated great potential for biosensing applications, combining the polymer properties to the visible light diffraction caused by their periodic structure. However, a better understanding of the behavior of such structures is essential in the objective to develop efficient and versatile biosensors. This work proposes to investigate the formation and properties of CCAs created by the self-assembly of polymer microspheres in aqueous medium. For that purpose, particles with different features have been synthesized and studied to highlight the correlation between the properties of the particles and the behavior of the CCAs. First, anionic and cationic cross-linked polystyrene microspheres have been prepared by surfactant-free emulsion polymerization. Different sizes, shapes, polydispersities and surface charge densities have been obtained by the use of various amounts of charged comonomers, either vinylbenzyltrimethylammonium chloride or sodium styrenesulfonate. Indeed, an increasing amount of the ionic comonomer leads to a decreasing particle size because of the ability to electrostatically stabilize more surfaces. However, above a certain concentration, the polymerization of the comonomer in solution increases the polydispersity of the particle size. When allowed by a low polydispersity, the charged microspheres can self-assemble into CCAs with intense visible light diffraction, even for particles not quite spherical. It appears that the electrostatic repulsions created by the charges help in the formation of the periodic structure over a wide range of particle concentrations and improve their stability towards ionic strength. Secondly, the need for a sensitive component brought us to investigate core-shell structures. These microspheres, synthesized by a two-step surfactant-free emulsion polymerization, are made of a polystyrene core and a hydrogel shell. Different hydrogels have been used to achieve different properties: poly(acrylic acid) for pH-sensitivity, poly(N-isopropylacrylamide) for thermosensitivity and poly(N-isopropylacrylamide-co-acrylic acid) for double sensitivity to both stimuli. Above a certain critical concentration, and over a wide range of concentrations, these microspheres also form CCAs with visible light diffraction. The resulting crystalline structures also display a response to the stimuli, visible through changes in the diffraction spectra, but the response appears to be dependent on the microsphere concentration. This behavior seems to be the result of a change in the interactions between particles rather than the outcome of the volume change of the particles. Attractive van der Waals and repulsive steric interactions are clearly affected by the temperature-induced volume phase transition of poly(N-isopropylacrylamide) microspheres. In the case of pH-sensitive, electrostatic interactions are also to be considered. The effect of concentration can then related to the range of the interactions. Finally, in the objective to develop glucose sensors, the previous microspheres have been functionalized with 3-aminophenylboronic acid to make them responsive to glucose. The effects of the functionalization and complexation with glucose on the particles and their CCAs have been investigated. The crystalline structure is clearly affected by the presence of glucose, even though the mechanism involved remains to be clarified.
13

Formation et propriétés des cristaux colloïdaux issus de l’auto-assemblage de microsphères de polymère

Bazin, Gwénaëlle 04 1900 (has links)
Le besoin pour des biocapteurs à haute sensibilité mais simples à préparer et à utiliser est en constante augmentation, notamment dans le domaine biomédical. Les cristaux colloïdaux formés par des microsphères de polymère ont déjà prouvé leur fort potentiel en tant que biocapteurs grâce à l’association des propriétés des polymères et à la diffraction de la lumière visible de la structure périodique. Toutefois, une meilleure compréhension du comportement de ces structures est primordiale avant de pouvoir développer des capteurs efficaces et polyvalents. Ce travail propose d’étudier la formation et les propriétés des cristaux colloïdaux résultant de l’auto-assemblage de microsphères de polymère en milieu aqueux. Dans ce but, des particules avec différentes caractéristiques ont été synthétisées et caractérisées afin de corréler les propriétés des particules et le comportement de la structure cristalline. Dans un premier temps, des microsphères réticulées de polystyrène anioniques et cationiques ont été préparées par polymérisation en émulsion sans tensioactif. En variant la quantité de comonomère chargé, le chlorure de vinylbenzyltriméthylammonium ou le sulfonate styrène de sodium, des particules de différentes tailles, formes, polydispersités et charges surfaciques ont été obtenues. En effet, une augmentation de la quantité du comonomère ionique permet de stabiliser de façon électrostatique une plus grande surface et de diminuer ainsi la taille des particules. Cependant, au-dessus d’une certaine concentration, la polymérisation du comonomère en solution devient non négligeable, provoquant un élargissement de la distribution de taille. Quand la polydispersité est faible, ces microsphères chargées, même celles non parfaitement sphériques, peuvent s’auto-assembler et former des cristaux colloïdaux diffractant la lumière visible. Il semble que les répulsions électrostatiques créées par les charges surfaciques favorisent la formation de la structure périodique sur un grand domaine de concentrations et améliorent leur stabilité en présence de sel. Dans un deuxième temps, le besoin d’un constituant stimulable nous a orientés vers les structures cœur-écorce. Ces microsphères, synthétisées en deux étapes par polymérisation en émulsion sans tensioactif, sont formées d’un cœur de polystyrène et d’une écorce d’hydrogel. Différents hydrogels ont été utilisés afin d’obtenir des propriétés différentes : le poly(acide acrylique) pour sa sensibilité au pH, le poly(N-isopropylacrylamide) pour sa thermosensibilité, et, enfin, le copolymère poly(N-isopropylacrylamide-co-acide acrylique) donnant une double sensibilité. Ces microsphères forment des cristaux colloïdaux diffractant la lumière visible à partir d’une certaine concentration critique et pour un large domaine de concentrations. D’après les changements observés dans les spectres de diffraction, les stimuli ont un impact sur la structure cristalline mais l’amplitude de cet effet varie avec la concentration. Ce comportement semble être le résultat des changements induits par la transition de phase volumique sur les interactions entre particules plutôt qu’une conséquence du changement de taille. Les interactions attractives de van der Waals et les répulsions stériques sont clairement affectées par la transition de phase volumique de l’écorce de poly(N-isopropylacrylamide). Dans le cas des microsphères sensibles au pH, les interactions électrostatiques sont aussi à considérer. L’effet de la concentration peut alors être mis en relation avec la portée de ces interactions. Finalement, dans l’objectif futur de développer des biocapteurs de glucose, les microsphères cœur-écorce ont été fonctionnalisées avec l’acide 3-aminophénylboronique afin de les rendre sensibles au glucose. Les effets de la fonctionnalisation et de la complexation avec le glucose sur les particules et leur empilement périodique ont été examinés. La structure cristalline est visiblement affectée par la présence de glucose, même si le mécanisme impliqué reste à élucider. / The need for biosensors with high sensibility but simple preparation and use has been increasing, especially in the biomedical field. Crystalline colloidal arrays (CCAs) formed by polymer microspheres have already demonstrated great potential for biosensing applications, combining the polymer properties to the visible light diffraction caused by their periodic structure. However, a better understanding of the behavior of such structures is essential in the objective to develop efficient and versatile biosensors. This work proposes to investigate the formation and properties of CCAs created by the self-assembly of polymer microspheres in aqueous medium. For that purpose, particles with different features have been synthesized and studied to highlight the correlation between the properties of the particles and the behavior of the CCAs. First, anionic and cationic cross-linked polystyrene microspheres have been prepared by surfactant-free emulsion polymerization. Different sizes, shapes, polydispersities and surface charge densities have been obtained by the use of various amounts of charged comonomers, either vinylbenzyltrimethylammonium chloride or sodium styrenesulfonate. Indeed, an increasing amount of the ionic comonomer leads to a decreasing particle size because of the ability to electrostatically stabilize more surfaces. However, above a certain concentration, the polymerization of the comonomer in solution increases the polydispersity of the particle size. When allowed by a low polydispersity, the charged microspheres can self-assemble into CCAs with intense visible light diffraction, even for particles not quite spherical. It appears that the electrostatic repulsions created by the charges help in the formation of the periodic structure over a wide range of particle concentrations and improve their stability towards ionic strength. Secondly, the need for a sensitive component brought us to investigate core-shell structures. These microspheres, synthesized by a two-step surfactant-free emulsion polymerization, are made of a polystyrene core and a hydrogel shell. Different hydrogels have been used to achieve different properties: poly(acrylic acid) for pH-sensitivity, poly(N-isopropylacrylamide) for thermosensitivity and poly(N-isopropylacrylamide-co-acrylic acid) for double sensitivity to both stimuli. Above a certain critical concentration, and over a wide range of concentrations, these microspheres also form CCAs with visible light diffraction. The resulting crystalline structures also display a response to the stimuli, visible through changes in the diffraction spectra, but the response appears to be dependent on the microsphere concentration. This behavior seems to be the result of a change in the interactions between particles rather than the outcome of the volume change of the particles. Attractive van der Waals and repulsive steric interactions are clearly affected by the temperature-induced volume phase transition of poly(N-isopropylacrylamide) microspheres. In the case of pH-sensitive, electrostatic interactions are also to be considered. The effect of concentration can then related to the range of the interactions. Finally, in the objective to develop glucose sensors, the previous microspheres have been functionalized with 3-aminophenylboronic acid to make them responsive to glucose. The effects of the functionalization and complexation with glucose on the particles and their CCAs have been investigated. The crystalline structure is clearly affected by the presence of glucose, even though the mechanism involved remains to be clarified.

Page generated in 0.0811 seconds