• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermal navigation in larval zebrafish

Robson, Drew Norman 08 June 2015 (has links)
Navigation in complex environments requires selection of appropriate actions as a function of local cues. To gain a quantitative and mechanistic understanding of zebrafish thermal navigation, we have developed a novel assay that requires animals to rely exclusively on thermosensory information in the absence of other cues such as vision or mechanosensation. We show that zebrafish use both absolute and relative temperature information to restrict their locomotor trajectories to a preferred temperature range. We identify components of movement that are modulated solely by absolute temperature, as well as components that are modulated by both absolute and relative temperature. Specifically, we find that dwell time between movements and displacement per movement depend solely on absolute temperature, whereas turn magnitude and turn direction bias are modulated by absolute and relative temperature. To evaluate whether these sensorimotor relationships could explain thermal restriction in our navigation assay, we performed Monte Carlo simulations of locomotor trajectories based on all or subsets of these relationships. We find that thermosensory modulation of turn magnitude and turn direction bias constitute the core navigation strategy in larval zebrafish, while modulation of dwell time accelerates the execution of this strategy at noxious temperatures. Modulation of turn direction bias represents a novel strategy not found in invertebrate models, whereby animals correct unfavorable headings by preferentially turning in a preferred turn direction until they obtain a favorable heading. Modulating turn direction bias in response to recent sensory experience is an effective strategy for selecting favorable headings in organisms that do not have a dedicated sampling phase before each reorientation event.
2

The roles of transient receptor potential channels in thermostatic behavior, in thermal acclimation, and in tonic immobility in the red flour beetle, Tribolium castaneum (coleoptera: tenebrionidae)

Kim, Hong Geun January 1900 (has links)
Doctor of Philosophy / Department of Entomology / David C. Margolies and Yoonseong Park / Organisms are capable of sensing environmental conditions through diverse mechanisms. Transient receptor potential channels (TRPs) are a cation channel family that has been found to function in diverse sensing mechanisms. In this dissertation, I identified the function of several TRPs in thermosensing and mechanosensing in the red flour beetle, Tribolium castaneum. Candidate TRPs were chosen based on homology to TRPs found and studied in Drosophila melanogaster. To identify the function of candidate TRPs in T. castaneum, I suppressed the expression of target genes by RNA interference technique and investigated the phenotype of each treated beetle. Temperature is a major limiting environmental factor for organisms. I tested the function of candidate TRPs in thermotaxis (behavior) and thermal acclimation (physiology). Using bioinformatics approaches, I identified three candidate TRPs – painless, pyrexia, and trpA1 – involved in high temperature sensing. To test thermotactic behavior, I investigated beetle movement on a temperature arena with two separate temperature zones. Thermal acclimation was tested by pre-exposing beetles to either 42 °C for 10 min. When treated with double stranded RNA of TRPA1 (dstrpA1), the thermotactic response of beetles at 39 and 42 °C was reduced when compared to control groups. With pre-exposure at 42 °C, survivorship of dstrpA1-treated beetles significantly increased after one minute exposure at 52 °C compared to beetles that were not pre-exposed. With dspainless treatment, beetles showed lower response to thermal acclimation and lower long-term survivorship. Beetles treated with dspyrexia showed lower recovery after heat treatment without pre-exposure at 42 °C. To identify the function of candidate TRPs in mechanosensing, I evaluated dsRNA treated beetles for survival, walking behavior, and tonic immobility. Treatment with dsnompC and dstrpA5 resulted in failure in eclosion, causing 93 % mortality in both treatments. Survivors in dsnompC showed defects in elytra sclerotization. In dsnanchung and dsinactive treatments, adults showed abnormal walking behavior and reduced walking speed that were likely caused by defects of mechanosensing in folding of the joint between the femur and tibia. For tonic immobility, beetles with dsnanchung, dsinactive, dswaterwitch and dsick2 (insect cytokine 2) treatments showed increased sensitivity to mechanical stimulation leading to tonic immobility.
3

Caractériser l'effet des cannabinoïdes sur la réponse nociceptive et identifier les cibles moléculaires chez Caenorhabditis elegans

Boujenoui, Fatma 08 1900 (has links)
Ce projet de recherche porte sur l’étude de la régulation des systèmes cannabinoïdes et vanilloïdes chez Caenorhabditis elegans (C. elegans), dans le but d’évaluer les effets antinociceptifs du tétrahydrocannabinol (THC) et du cannabidiol (CBD). C. elegans est un modèle largement utilisé pour étudier la nociception, visant principalement à caractériser les réponses nociceptives induites par le THC et le CBD, ainsi qu’à identifier les mécanismes et les cibles moléculaires impliqués. Les résultats des études sur l’utilisation du cannabis dans le traitement de la douleur chronique chez les mammifères sont controversés. Cette recherche vise à étudier l’effet du CBD et du THC sur la réponse nociceptive chez C. elegans et à approfondir la compréhension des mécanismes pharmacologiques sous-jacents. La méthodologie consiste à quantifier l’effet antinociceptif du CBD et du THC chez C. elegans par la méthode de la thermotaxie. Les nématodes sauvages (N2) étaient exposés à des concentrations croissantes de phytocannabinoïdes pour évaluer la relation concentration-effet. D’autres tests étaient effectués sur des souches mutantes exprimant des récepteurs cannabinoïdes et vanilloïdes afin d’identifier préalablement leurs cibles. Enfin, les analyses protéomiques et bioinformatiques seront effectuées pour identifier les voies de signalisation et les processus biologiques induits par l’interaction entre les phytocannabinoïdes et leurs cibles. Cette étude démontre l’activité antinociceptive du CBD et du THC chez C. elegans avec des effets rémanents pour THC, en ciblant respectivement le vanilloïde pour le CBD et le cannabinoïde pour les systèmes THC. Les analyses protéomiques et bio-informatiques mettent en évidence des différences significatives dans leurs voies de signalisation et leurs processus biologiques. / The objective of this research project was to focus on studying the regulation of cannabinoid and vanilloid systems in Caenorhabditis elegans (C. elegans) to evaluate the anti-nociceptive effects of tetrahydrocannabinol (THC) and cannabidiol (CBD). C. elegans is a widely used model for studying nociception, with the main objective being to characterize nociceptive responses induced by THC and CBD, as well as identify the underlying molecular mechanisms and targets involved. Recent studies on the use of cannabis for the treatment of chronic pain in mammals have shown controversial results. This research aims to investigate the effect of CBD and THC on the nociceptive response in C. elegans and understand the underlying pharmacological mechanisms. The methodology consisted in quantifying the antinociceptive effect of CBD and THC in C. elegans using the thermotaxis method. WT(N2) were exposed to decreasing concentrations of phytocannabinoids to evaluate the dose and effect relationship. Further tests performed on mutant expressing cannabinoid and vanilloid receptors allowed preliminarily identification of their targets. Finally, proteomic and bioinformatics analyses were used to identify the signaling pathways and biological processes induced by these phytocannabinoids. The result of this study confirmed the antinociceptive effect of CBD and THC in C. elegans, with a remanent effect of THC. This effect is mediated by the vanilloid system for CBD and the cannabinoid system for THC, respectively. Also, proteomics and bioinformatics analyses revealed significant differences in signaling pathways and biological processes.

Page generated in 0.0602 seconds