• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Orbit parametrizations of theta characteristics on hypersurfaces / 超曲面上のシータ・キャラクタリスティックの軌道によるパラメータ付け

Ishitsuka, Yasuhiro 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18766号 / 理博第4024号 / 新制||理||1580(附属図書館) / 31717 / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)准教授 伊藤 哲史, 教授 上田 哲生, 教授 雪江 明彦 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
2

Propriétés géométriques et arithmétiques explicites des courbes / Explicit geometric and arithmetic properties of algebraic curves

Çelik, Türkü Özlüm 31 August 2018 (has links)
Les courbes algébriques sont des objets centraux de la géométrie algébrique. Dans cette thèse, nous étudions ces objets sous différents angles de la géométrie algébrique tels que la géométrie algébrique effective et la géométrie arithmétique. Dans le premier chapitre, nous étudions les courbes non-hyperelliptiques de genre g et leurs jacobiennes liées par l’intermédiaire de diviseurs thêta caractéristiques. Ces derniers contiennent des propriétés géométriques extrinsèques qui permettent de calculer les constantes thêta. Dans le deuxième chapitre, nous nous concentrons sur les courbes hyperelliptiques de genre 2 et leur surface de Kummer associée avec une motivation cryptographique. Dans le troisième et dernier chapitre, nous étudions les revêtements doubles non-ramifiés des courbes non-hyperelliptiques de genre g pour obtenir des informations sur le p-rang. / Algebraic curves are central objects in algebraic geometry. In this thesis, we consider these objects from different angles of algebraic geometry such as computational algebraic geometry and arithmetic geometry. In the first chapter, we study non-hyperelliptic curves of genus g and their Jacobians linked via theta characteristic divisors. Such divisors provide extrinsic geometric properties which allow us to compute theta constants. In the second chapter, we focus on hyperelliptic curves of genus 2 and the associated Kummer surface with a cryptographic motivation. In the third and final chapter, we examine unramified double covers of non-hyperelliptic curves of genus g to obtain information about p-rank.

Page generated in 0.0713 seconds