• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

CONTROLLING THE PROPERTIES OF HOMOGENEOUS EPSILON NEAR ZERO MATERIALS AND THEIR SWITCHING BEHAVIOR

Mustafa Goksu Ozlu (12476655) 28 April 2022 (has links)
<p>One of the longstanding goals of photonics research has been to obtain strong optical nonlinearities. A promising method to achieve this goal is to operate in the so-called epsilon near zero (ENZ) spectral regime, where the real part of the dielectric permittivity changes sign. If accompanied by low losses, this region enables a platform to achieve extraordinarily high nonlinear response, along with many other interesting optical phenomena. In this work, some of the common all-optical switching structures employing homogeneous ENZ materials are investigated under varying conditions of frequency, incidence angle, and polarization. The optimum switching conditions have been highlighted to pave the way forward to the best experimental configurations in future studies. Moreover, the properties of some of the emerging novel plasmonic materials such as aluminum-doped zinc oxide (AZO) and titanium nitride (TiN) are investigated, specifically for ENZ applications. Their thickness-dependent crystalline structure and carrier densities are employed as a method to control their optical properties. A near-perfect absorption scheme is demonstrated utilizing the Ferrell-Berreman mode occurring at the ENZ region of ultrathin AZO and TiN film. The ENZ frequency and the associated absorption peak of AZO are engineered through thickness-dependence to cover most of the telecom range. This work covers the theoretical background for ENZ nonlinearities and looks into the materials aspect for better control of nonlinearities in experimental realizations.</p>

Page generated in 0.0665 seconds