• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2812
  • 667
  • 451
  • 412
  • 173
  • 116
  • 88
  • 69
  • 66
  • 23
  • 19
  • 19
  • 19
  • 19
  • 19
  • Tagged with
  • 5948
  • 3462
  • 1763
  • 663
  • 546
  • 521
  • 520
  • 506
  • 471
  • 383
  • 381
  • 375
  • 374
  • 351
  • 344
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
731

Magnetic, magneto-optic & microstructural properties of Co based multilayer films

Tatnall, Christopher J. January 1996 (has links)
No description available.
732

Spin transport in rare earth magnetic heterostructures

Hindmarch, Aidan Thomas January 2003 (has links)
No description available.
733

The observation and interpretation of S.W.R. in thin films

Davies, M. January 1986 (has links)
No description available.
734

Lorentz microscopy of MFM tips and related structures

Zhou, Lin January 1996 (has links)
No description available.
735

Solid state studies of phthalocyanines

Elliott-Martin, Richard J. January 1993 (has links)
No description available.
736

Screen printed layers of CdS for solar cells

Faidah, Adel Saleh January 1988 (has links)
It is generally accepted nowadays that a significant cost reduction in terrestrial solar cell application could be brought about by investigating alternative fabrication techniques for solar cells. It is believed that screen printing (or the so called thick film technique) is one such technique which promises a potentially low cost method for fabricating flexible, large area solar energy conversion cells. The active research on this technique started in 1976 in Japan. However, it was not until 1983, that wide interest developed when the Matsushita group in Japan reported an efficiency of 12.8% for their entirely screen printed CdS/CdTe solar cells. This was the highest reported efficiency for any thin film solar cell. However, the details of the fabrication processes of these cells were not reported and several scientific groups in the world started to explore this technique. The first published report was in 1985. In the last few years these groups have reported results on various aspects of this technique. Nevertheless there are still major parameters to be investigated. This thesis represents a concise reference for the application of the screen printing technique to solar cells. In the course of this study many new investigations have been made which supplement the previous work by other groups. Starting with a pure CdS powder with suitable grain size and distribution is a prerequisite for achieving the best morphological and electrical behaviour of screen printed layers of CdS. Careful paste mixing is of uppermost importance which can override any other parameters involved in the fabrication processes. It is essential to impose restricted sintering conditions for adequate utilization of the doping and fluxing function of the CdCl(_2) material. Standardization of the printing, preparation and sintering conditions involved in the fabrication processes were necessary to ensure reproducible CdS layers. Good quality screen printed layers were fabricated on soda lime substrates. The significance of other substrate materials for CdS preparation was also investigated and optimum substrate choice is suggested. The properties of the CdS screen printed layers were investigated by forming simple Schottky devices and more complicated heterojunction solar cells. Good rectification behaviour of the Schottky diodes was achieved. The CdS/CdTe solar cells revealed a wide spectral response. However, the photovoltaic behaviour was relatively poor largely due to the high resistivity of the CdTe part of the cell structure.
737

Film deposition and microfabrication of magnetic tunnel junctions with an MgO barrier

Du, Yuqing January 2012 (has links)
Magnetic tunnel junctions (MTJs), which consist of a thin insulation layer sandwiched by two ferromagnetic (FM) layers, are among the key devices of spintronics that have promising technological applications for computer hard disk drives, magnetic random access memory (MRAM) and other future spintronic devices. The work presented here is related to the development of relevant techniques for the preparation and characterization of magnetic films, exchanged biased systems and MTJs. The fabrication and characterization of PtMn/CoFe exchange biased systems and MTJs with Al-O barriers were undertaken when the new Aviza StratIon fxP ion beam deposition tool was developed by the project consortium funded by DTI MNT. After the Nordiko 9550 spintronic deposition tool was installed at Plymouth, the work focused on the development of MTJ multilayer stacks with layer structures of CoFeB/MgO/CoFe/IrMn and IrMn/CoFeB/MgO/CoFeB to achieve coherent tunneling with a crystalline MgO barrier. The film deposition, microfabrication, magnetic field annealing, microstructural and nano-scale characterization, magnetic and magneto-transport measurement for these devices have been systematically studied to achieve smooth interfaces and desired crystallographic textures and magnetic properties of layer stacks. Magnetoresistance (MR) of up to 200% was obtained from MTJs with a layer structure of Ta/CuN/Ta/CoFeB/MgO/CoFe/IrMn/Ta and a CuN bottom electrode. Enhanced exchange anisotropy from the bottom pinned IrMn/CoFeB stacks has been obtained, which demonstrated the possibility of fabricating MTJs with CoFeB as both the top and bottom FM electrodes with strong exchange bias. The origin of the enhanced exchange bias field was studied by employing high resolution transmission electron microscopy (HRTEM) and x-ray magnetic circular dichroism (XMCD) to examine the mmicrostructure properties and element specific magnetic properties of the stacks. Results demonstrate that the enhanced exchange anisotropy in the IrMn/CoFeB system is closely associated with the increased uncompensated interfacial spins. MTJs with layered structures of IrMn/CoFeB/MgO/CoFeB were prepared based on this exchange bias system. However, further work is required for the optimisation of the (001) crystallographic textures of the CoFeB/MgO/CoFeB stack to achieve coherent tunneling.
738

Development and applications of an alternating gradient force magnetometer

Lewis, Vernon Geoffrey January 1995 (has links)
No description available.
739

Languir monolayers and Langmuir-Blodgett films containing the [M(dmit)←2]'n'- anion

Hughes, Arwel Vaughan January 1997 (has links)
No description available.
740

Synthesis of conjugated polymers and their use in photovoltaic cells

Daoud, Walid January 2002 (has links)
No description available.

Page generated in 0.0401 seconds