Spelling suggestions: "subject:"fibercomposite"" "subject:"angle.composite""
1 |
Arsenic Removal via Defect-Free Interfacially-Polymerized Thin-Film Composite MembranesAljubran, Murtadha A. 11 1900 (has links)
Billions of people rely solely on groundwater for drinking and daily use. In the last few decades, groundwater was shown to be contaminated with arsenic in high concentrations, especially in Asian countries such as Bangladesh. Arsenic (As) is ranked the first among 20 toxic substances by the Agency for Toxic Substances and Disease Registry (ATSDR) and United States Environmental Protection Agency (USEPA). Because many diseases and deaths were linked to consumption of arsenic-contaminated groundwater, the world health organization (WHO) reduced the arsenic standard level for drinking water from 50 to 10 µg L-1. Urgent demands for safe drinking water lead to developing potential technologies for removal of arsenic from groundwater. Arsenic is mainly present as uncharged As(III) in groundwater, which makes it difficult to be efficiently removed by conventional treatment methods. Therefore, membrane technology could be a promising potential solution. Because membrane technology has not been widely tested for arsenic removal, a novel in-house defect-free interfacially-polymerized (IP) cross-linked polyamide thin-film composite (TFC) nanofiltration membrane, namely, PIP-KRO1, was tested in this research. Two commercial TFC membranes, namely Dow NF270 and Sepro RO4, were also tested and compared to PIP-KRO1. The membranes were tested at four different pH conditions (4, 6, 8, and 10) in a cross-flow flat sheet membrane unit. The experiments were divided into two parts: (i) the membranes were tested for water permeance and salt (NaCl) removal and (ii) tested for As(III) removal in the presence of 250 ppm NaCl. The results in this study showed strong size sieving rejection for RO4 and a combination of size sieving and charge exclusion mechanisms for PIP-KRO1 and NF270. In general, the rejection trend was RO4 > PIP-KRO1 > NF270 for both NaCl and As(III). In contrast, the trend for water permeance was NF270 > PIP-KRO1 > RO4. The minimum and maximum salt rejection at pH 4 and pH 10, respectively, were 85 and 98.8% for RO4, 57 and 89% for PIP-KRO1, and 34 and 76.8% for NF270. In addition, the TFC membranes demonstrated a maximum As(III) rejection of 98.7, 69.5, and 46.3% for RO4, PIP-KRO1, and NF270, respectively. Based on the characterizations of the membranes, PIP-KRO1 had the highest cross-linking (N/O ratio) followed by RO4 and NF270, respectively. The same trend was observed for the thickness of the polyamide selective layer (PIP-KRO1 > RO4 > NF270). The zeta potential for NF270 was slightly higher than that for PIP-KRO1; RO4 had much lower membrane surface charge. In terms of surface roughness, the following trend was observed: RO4 > PIP-KRO1 > NF270.
|
2 |
Liquid and Gas Permeation Studies on the Structure and Properties of Polyamide Thin-Film Composite MembranesDuan, Jintang 11 1900 (has links)
This research was undertaken to improve the understanding of structure-property-performance relationships in crosslinked polyamide (PA) thin-film composite (TFC) membranes as characterized by liquid and gas permeation studies. The ultrathin PA selective layer formed by interfacial polymerization between meta-phenylene diamine and trimesoyl chloride was confirmed to contain dense polymer matrix regions and defective regions in both dry and hydrated states.
The first part of this research studied the effect of non-selective convection through defective regions on water flux and solute flux in pressure-assisted forward osmosis (PAFO). Through systematic comparison with cellulose triacetate (CTA) and PEBAX-coated PA-TFC membranes, the existence of defects in pristine, hydrated PA-TFC membranes was verified, and their effects were quantified by experimental and modeling methods. In the membrane orientation of selective layer facing the draw solution, water flux increases of up to 10-fold were observed to result from application of low hydraulic pressure (1.25 bar). Convective water flux through the defects was low (< 1% of total water flux for PA-TFC membranes) and of little consequence in practical FO or reverse osmosis (RO) applications. However, it effectively mitigated the concentration polarization in PAFO and therefore greatly increased the diffusive flux through the dense regions.
The second part of this research characterized the structures of the PA material and the PA selective layer by gas adsorption and gas permeation measurements. Gas adsorption isotherms (N2 at 77K, CO2 at 273K) confirmed the microporous nature of PA in comparison with dense CTA and polysulfone materials. Gas permeation through the commercial PA-TFC membranes tested occurred primarily in the defective regions, resulting in Knudsen gas selectivity for various gas pairs. Applying a Nafion coating layer effectively plugged the defects and allowed gas permeation through the dense PA regions, which significantly decreased gas permeance and increased gas selectivity. Specifically, high He and H2 selectivity against CO2 suggests the potential applications of this membrane in He recovery and CO2 capture in pre-combustion.
Finally, the dense PA matrix was modified with two types of novel nanofiller to improve desalination performance in RO. A series of dense, nano-sized (1-3 nm) polyhedral oligomeric silsesquioxanes (POSS) with different functional groups were systematically incorporated into the PA matrix by physical blending or chemical fixation. The free volume of the PA matrix increased with addition of POSS, leading to water flux increases of up to 67 %, while maintaining high NaCl rejections. The effects of adding microporous, hydrophobic zeolitic imidazolate framework-8 (ZIF-8) nanoparticles into PA are presented in the last chapter. A 162 % water flux increase was achieved without decreasing NaCl rejection. This interesting result can be attributed to a less crosslinked PA structure and to the intrinsic desalination properties of ZIF-8.
|
3 |
Versatile High-Performance Regenerated Cellulose Membranes Prepared using Trimethylsilyl Cellulose as a PrecursorPuspasari, Tiara 05 1900 (has links)
Cellulose has emerged as an indispensable membrane material due to its abundant availability, low cost, fascinating physiochemical properties and environment benignancy. However, it is believed that the potential of this polymer is not fully explored yet due to its insolubility in the common organic solvents, encouraging the use of derivatization-regeneration method as a viable alternative to the direct dissolution in exotic or reactive solvents.
In this work, we use trimethylsilyl cellulose (TMSC), a highly soluble cellulose derivative, as a precursor for the fabrication of cellulose thin film composite membranes. TMSC is an attractive precursor to assemble thin cellulose films with good deposition behavior and film morphology; cumbersome solvents used in the one step cellulose processing are avoided. This derivative is prepared from cellulose by the known silylation reaction. The complete transformation of TMSC back into cellulose after the membrane formation is carried out by vapor-phase acid treatment, which is simple, scalable and reproducible. This process along with the initial TMSC concentration determines the membrane sieving characteristics.
Unlike the typical regenerated cellulose membranes with meso- or macropores, membranes regenerated from TMSC display micropores suitable for the selective separation of nanomolecules in aqueous and organic solvent nanofiltration. The membranes introduced in this thesis represent the first polymeric membranes ever reported for highly selective separation of similarly sized small organic molecules based on charge and size differences with outstanding fluxes. Owing to its strong hydrophilic and amorphous character, the membranes also demonstrate excellent air-dehumidification performance as compared to previously reported thin film composite membranes.
Moreover, the use of TMSC enables the creation of the previously unfeasible cellulose–polydimethylsiloxane (PDMS) and cellulose–polyethyleneimine (PEI) blend membranes with a good compatibility. The cellulose–PDMS membranes demonstrate attractive performance in ethanol-water pervaporation as compared to the commercial PDMS membrane, and allow nanofiltration of a wide range of solvents with different polarity. The cellulose-PEI membranes exhibit anomalous performance improvement in nanofiltration as compared to the corresponding pure membranes. This study has opened up many great opportunities for cellulose to continuously contribute to sustainable and economical membrane processes.
|
4 |
Preparation and characterization of disulfonated polysulfone films and polyamide thin film composite membranes for desalinationXie, Wei, 1982- 30 January 2012 (has links)
The current reverse osmosis desalination membrane market is dominated by aromatic polyamide thin film composite (TFC) membranes. However, these polyamide membranes suffer from poor resistance to continual exposure to oxidizing agents such as chlorine in desalination applications. To overcome these problems, we have synthesized and characterized a new generation of materials, disulfonated poly(arylene ether sulfone) (BPS) random copolymer, for desalination membranes. A key technical feature of these new materials is their high tolerance to chlorine in feed water and their excellent reproducibility in synthesis.
In this study, water and sodium chloride solubility, diffusivity and permeability in BPS copolymers were measured for both acid and salt form samples at sulfonation levels from 20 to 40 mol percent. The hydrophilicity of these materials, based on water uptake, increased significantly as sulfonation level increased. The water and salt diffusivity and permeability were correlated with water uptake, consistent with expectations from free volume theory. In addition, a tradeoff was observed between water/salt solubility, diffusivity, and permeability selectivity and water solubility, diffusivity and permeability, respectively.
The influence of cation form and degree of sulfonation on free volume, as probed via positron annihilation lifetime spectroscopy (PALS), was determined in BPS random copolymers in both the dry and hydrated states. PALS-based free volume data for hydrated polymers were correlated with water and salt transport properties. The influence of processing history on transport properties of BPS films was also studied. Potassium form BPS films having a 32 mol% sulfonation level were acidified using solid state and solution routes. Additionally, several films were subjected to various thermal treatments in the solid state. The influence of acidification, thermal treatment, and counter-ion form on transport properties was investigated.
Finally, the influence of synthesis methods of polyamide TFC membranes from m-phenylenediamine (MPD) and trimesoyl chloride (TMC) via interfacial polymerization on transport properties is reported. Then, a disulfonated diamine monomer (S-BAPS) was used instead of MPD to prepare TFC membranes. The resulting membranes exhibited reduced chlorine tolerance than those prepared from MPD. However, introduction of S-BAPS to the MPD/TMC polymerization system increased the fouling resistance of the resulting polyamide TFC membranes. / text
|
5 |
Synthesis of Thin Film Composite Metal-Organic Frameworks Membranes on Polymer SupportsBarankova, Eva 06 1900 (has links)
Since the discovery of size-selective metal-organic frameworks (MOF) researchers have tried to manufacture them into gas separation membranes. ZIF-8 became the most studied MOF for membrane applications mainly because of its simple synthesis, good chemical and thermal stability, recent commercial availability and attractive pore size.
The aim of this work is to develop convenient methods for growing ZIF thin layers on polymer supports to obtain defect-free ZIF membranes with good gas separation properties. We present new approaches for ZIF membranes preparation on polymers.
We introduce zinc oxide nanoparticles in the support as a secondary metal source for ZIF-8 growth. Initially the ZnO particles were incorporated into the polymer matrix and later on the surface of the polymer by magnetron sputtering. In both cases, the ZnO facilitated to create more nucleation opportunities and improved the ZIF-8 growth compared to the synthesis without using ZnO. By employing the secondary seeded growth method, we were able to obtain thin (900 nm) ZIF-8 layer with good gas separation performance.
Next, we propose a metal-chelating polymer as a suitable support for growing ZIF layers. Defect-free ZIF-8 films with a thickness of 600 nm could be obtained by a contra-diffusion method. ZIF-8 membranes were tested for permeation of hydrogen and hydrocarbons, and one of the highest selectivities reported so far for hydrogen/propane, and propylene/propane was obtained.
Another promising method to facilitate the growth of MOFs on polymeric supports is the chemical functionalization of the support surface with functional groups, which can complex metal ions and which can covalently bond the MOF crystals. We functionalized the surface of a common porous polymeric membrane with amine groups, which took part in the reaction to form ZIF-8 nanocrystals. We observed an enhancement in adhesion between the ZIF layer and the support. The effect of parameters of the contra-diffusion experiment (such as temperature lower than room temperature and synthesis times shorter than 1 hour) on ZIF-8 membrane properties was evaluated. We could prepare one of the thinnest (around 200 nm) yet selective ZIF-8 films reported.
|
6 |
Interfacially Polymerized Thin-Film Composite Membranes for Gas Separation Using Aliphatic Alcohols as Polar PhaseEromosele, Praise 06 1900 (has links)
Membrane processes have received growing attention due to their low energy consumption and ease of operation. Thin-film composite reverse osmosis membranes based on polyamides are the most widely applied commercial membranes, because of their high flux and selectivity. However, their application for gas separation processes is still limited. This is the due to the presence of defects in the membrane when in the dry state. Traditionally, thin-film composite membranes are made by interfacial polymerization between a polar (aqueous) phase and a non-polar (organic) phase. The most commonly applied thin-film composite membranes are made by dissolving m-phenylene diamine in the aqueous phase and trimesoyl chloride in the organic phase. This work investigated the possibility of fabricating thin-film composite membranes when an aliphatic alcohol (methanol, ethanol or isopropanol) is used as the polar phase. This is further extended to examining the ability of a PDMS coating to plug the defects in such layers. The effects of temperature and support type on the membrane performance were also studied. Solubility tests were conducted to determine the solubility limit of commercial and in-house fabricated amine monomers in water, methanol, ethanol and isopropanol. Water-insoluble monomers were found to be soluble in ethanol and methanol. Gas permeation tests were conducted on membranes made using water, methanol, ethanol and isopropanol as the polar phase. The results showed that the membranes produced by aliphatic alcohols had higher selectivities. The highest H2/CO2 selectivity of ~ 26 was observed in the ethanol-based membranes when they were coated with PDMS and tested at 80 C. It was confirmed that PDMS is able to plug the defects in the membrane. Membranes made on the polysulfone support were found to have higher permeance and comparable selectivity relative to the membranes made on the polyacrylonitrile supports. It was also found that a change in the polar phase solvent is able to alter the morphology of the membranes. SEM micrographs showed clear differences in the surface structure of each membrane. The average thickness values obtained from ellipsometry measurements showed a correlation with the interface miscibility. The thickest membrane corresponded to the most miscible interface (IPA/Isopar).
|
7 |
Fabrication of Thin-Film Composite, Reverse-Osmosis Membranes with Polyethylenimine Modifications for Enhancing Membrane Fouling ResistanceHamilton, Stephanie N 01 November 2022 (has links) (PDF)
Increasing water reuse opportunities for communities has become increasingly important as access to clean water is becoming more scarce. Reverse Osmosis (RO) is an advanced treatment technology used in water recycling wastewater for potable reuse applications. RO is a promising technology; however, the membranes have limitations including their high energy demand and their susceptibility to membrane fouling. The main objective of this study was to develop a reproducible method for the fabrication of RO membranes with enhanced flux and reduced susceptibility to fouling. Literature contains numerous publications on fabrication of thin film composite (TFC) RO membranes with high performance. However, the reports lacked all the details needed to fabricate a TFC RO membrane, making it difficult to replicate those published fabrication protocols. Based on the efforts of this study, the membrane fabrication procedures utilized did not yield the same quality and performance as reported in these articles. In this study, five TFC RO control membranes were replicated and compared. The membranes produced an average water flux of 21.9 ± 3.6 L/m2h (LMH) and an average salt rejection of 97.6% ± 2.0%. Based on these results, it was concluded that a reproducible fabrication technique was developed for fabricating consistent and reliable TFC RO membranes. Furthermore, this study investigated the role of fouling on TFC RO membrane performance. Enhancing membrane resistance to fouling helps maintain membrane selectivity, lifespan, and permeability. There has been an increasing interest in the modification of the RO membranes for enhanced hydrophilicity, which leads to improvements in fouling resistance. In this study, a positive and high charge density polymer, polyethylenimine (PEI), was introduced into the membrane matrix in varying layers of the membrane structure. PEI-1 was fabricated in-situ by grafting the PEI onto the polysulfone (PSf) support, while PEI-2 was fabricated via grafting of the PEI onto the membrane PA surface. The resulting membranes were characterized using Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Atomic Force Microscopy (AFM), and Goniometry. PEI-2 produced a more hydrophilic membrane when compared to PEI-1, however, PEI-1 performed better in terms of flux and selectivity. Multiple model foulants were used for investigating the modified membrane fouling performance. These model foulants were tested at varying concentrations, pH values, and with and without the presence of Ca2+ ions. The model foulants used were bovine serum albumin (BSA), sodium alginate, and humic acid. None of the model foulants resulted in a decrease in performance for the membrane over the duration of the tests (up to 13 hours). Future research is needed to develop a robust protocol for testing the fouling of the produced RO membranes within a reasonable timeframe.
|
8 |
Fouling-resistant coating materials for water purificationWu, Yuan-hsuan 23 October 2009 (has links)
Membrane technology has been used in water purification for decades. However,
membrane fouling remains a limiting factor. One way to control fouling is through
surface modification. Several studies report that increasing surface hydrophilicity can
reduce membrane fouling. Surface modification via physical coating (i.e., thin-film
composite membrane) was explored in this research to prevent membrane fouling.
Before making thin-film composite membranes, it was important to study
structure/property relations in a series of potential coating materials. This research aims
to contribute to a better fundamental understanding of the structure/property relations
which govern water transport, rejection of model foulants (i.e., emulsified oil droplet or
protein), and fouling characteristics in hydrogels based on poly(ethylene glycol)
diacrylate (PEGDA) and N-vinyl-2-pyrrolidone (NVP).
Crosslinked poly(ethylene glycol) (PEG) free-standing films were prepared by
UV-induced photopolymerization of PEGDA crosslinker in the presence of varying
amounts of water or monofunctional poly(ethylene glycol) acrylate (PEGA). The crosslinked PEGDA films exhibited polymerization induced phase separation (PIPS)
when the water content of the prepolymerization mixture was greater than 60 wt%.
Visible light absorbance measurements, water uptake, water permeability, and salt kinetic
desorption experiments were used to characterize the structure of these phase-separated,
crosslinked hydrogels. The films with PIPS exhibited a porous morphology in cryogenic
scanning electron microscope (CryoSEM) studies. Dead-end filtration experiments using
deionized water and bovine serum albumin (BSA) solutions were performed to explore
the fundamental transport and fouling properties of these materials. The total flux of pure
water through the films after prior exposure to BSA solution was nearly equal to that of
the as-prepared material, indicating that these PEGDA films resist fouling by BSA under
the conditions studied.
Crosslinked NVP free-standing films were prepared by UV-induced
photopolymerization in the presence of water, with NVP as the monomer and
N,N’-methylenebisacrylamide (MBAA) as the crosslinker. A series of crosslinked films
were polymerized at various prepolymerization water contents, NVP/MBAA ratios and at
various levels of UV light intensity in the polymerization. Like PEGDA, the NVP films
also underwent phase-separation during polymerization. The influence of monomer/
crosslinker ratio, prepolymerization water content, and UV intensities on membrane
morphology and water transport was characterized with CryoSEM, bio-atomic force
microscope (Bio-AFM) and dead-end filtration. Molecular weight cutoff (MWCO)
measurements were used to characterize the sieving property of crosslinked NVP films
polymerized at different UV intensities. UV intensity was found to have an impact on the
interconnectivity of crosslinked membranes. Finally, tests of fouling resistance to protein solution (bovine serum albumin) and oily water emulsion were performed. The NVP
crosslinked films had good protein and oily water fouling resistance.
Overall, both crosslinked PEGDA and NVP films exhibit fouling resistance to
oily water emulsions or protein solution. NVP films had more porous structure and
higher water permeability than did PEGDA films, while the more compact structure of
PEGDA films led to better rejection of model foulants (e.g., protein) than in NVP films.
Based on different applications (e.g., oil/water separation, protein filtration), different
coating materials must be chosen according to the membrane morphology, transport
property, and rejection of model foulants to achieve the highest water flux and foulant rejection in membranes used for water purification. / text
|
9 |
Síntese e caracterização de membranas de filme fino composto de polissulfona/quitosana reticulada com glutaraldeído. / Synthesis and characterization of thin film composite membranes of polysulfone/chitosan crosslinked with glutaraldehyde.Nogueira, Fabiana Tavares 18 May 2012 (has links)
Um grande obstáculo a ser vencido para que se tenha uma maior utilização da tecnologia de membranas na purificação de líquidos é o fenômeno do fouling. Como consequência, o desenvolvimento de membranas menos propensas ao fouling é hoje objeto de inúmeras pesquisas. Dentre os processos estudados, tem-se o desenvolvimento de membranas de filme fino composto, que possui como vantagem a possibilidade de se melhorar cada camada de maneira independente, de forma a se aperfeiçoar o desempenho da membrana como um todo. O projeto de pesquisa foi desenvolvido no laboratório do Centro Internacional de Referência em Reúso de Água (CIRRA/IRCWR), uma entidade sem fins lucrativos, vinculado ao Departamento de Engenharia Hidráulica e Ambiental da Escola Politécnica da Universidade de São Paulo (USP). Este teve como objetivo a síntese e a caracterização de membranas de filme fino composto de polissulfona e quitosana reticulada com glutaraldeído. Embora o objetivo principal desse trabalho tenha sido o desenvolvimento de membranas menos propensa ao fouling, a susceptibilidade ao fouling das membranas produzidas foi avaliada de maneira indireta, através da avaliação de propriedades como hidrofilicidade e rugosidade da superfície. Membranas de ultrafiltração a base de polissulfona (PSF) foram produzidas, através do método de separação de fases via imersão-precipitação, para serem usadas como suporte poroso para a camada de quitosana. Nessa etapa, a influência da concentração de PSF na solução polimérica; da temperatura de síntese; da umidade relativa do ar; e do suporte (não-tecido) nas características da membrana foram estudadas. O efeito da aplicação de uma camada de álcool polivinílico, reticulada com glutaraldeído, entre as camadas de PSF e quitosana, como forma de melhorar a estabilidade estrutural da membrana, foi avaliado. Adicionalmente, analisou-se a influência da introdução do glutaraldeído como agente reticulante na solução de quitosana na seletividade; na taxa de permeação; na estabilidade química; e na toxicidade da membrana. Os resultados obtidos mostraram que o aumento da concentração de PSF na solução polimérica, a diminuição da temperatura de síntese e o aumento da umidade do ar levaram à formação de membranas menos porosas. Os suportes de poliéster avaliados, CU414 e CU424 (Crane Nonwovens), embora apresentem características adequadas à produção de membranas, não se mostraram adequados para a síntese de membranas de PSF nas condições avaliadas devido a sua alta porosidade. A solução de reticulação da camada de álcool polivinílico (PVA), composta de glutaraldeído em solução aquosa de acetona, atacou quimicamente o suporte de poliéster e a membrana de polissulfona, inviabilizando a aplicação da camada de PVA entre as camadas de PSF e quitosana. A introdução do glutaraldeído tornou a camada de quitosana menos rugosa e mais hidrofílica. Adicionalmente, o aumento da concentração de glutaraldeído na solução de quitosana levou a um decréscimo na permeabilidade da membrana, o qual foi atribuído à compactação da estrutura da membrana. A reticulação da quitosana com glutaraldeído não levou a uma melhora significativa da capacidade de separação das membranas. A rejeição de ions bivalentes (Mg2+ e SO4 2-) e monovalentes (Na+ e Cl-) não ultrapassou 25% e 12%, respectivamente. Análises de microscopia de eletrônica de varredura realizadas com as membranas reticuladas com glutaraldeído, antes e após sua imersão em solução de HCl, indicaram que a superfície das membranas reticuladas com 3% de glutaraldeído aparentemente não foi afetada pelo ácido, ao contrário das membranas reticuladas com 1% e 5% de glutaraldeído, que apresentaram aumento no tamanho de seus poros. Não foi observada toxicidade aguda e/ou crônica, em relação aos organismos teste Daphinia similis e Ceriodaphinia dubia, respectivamente, em amostras de água que permaneceram em contato com as membranas reticuladas com glutaraldeído. / A major obstacle to be overcome in order to have a greater use of membrane technology in liquids purification is the phenomenon of fouling. As a consequence, the development of membranes less prone to fouling is now the objective of numerous studies. Among the processes evaluated, the development of thin film composite membranes has been the focus of many researches since it is possible to improve each layer independently, in order to improve the membrane performance as a whole. This work aimed to study the synthesis and characterization of thin film composite chitosan, crosslinked with glutaraldehyde, and polysulfone (PSF) membranes. PSF ultrafiltration membranes were produced by phase inversion via immersion precipitation to be used as porous support for the chitosan layer. The influence of PSF concentration in the polymeric solution; temperature of synthesis; air humidity, and membrane nonwoven support, CU414 and CU424 (Crane Nonwovens), on the membrane characteristics and performance were studied. The effect polyvinyl alcohol (PVA), crosslinked with glutaraldehyde, between PSF and chitosan layers, on the cast membrane structural stability was investigated. The influence of glutaraldehyde as a chitosan crosslinking agent on membrane selectivity, permeability, chemical stability, and toxicity was also evaluated. The results showed that increasing PSF concentration, decreasing temperature and increasing air humidity resulted in less porous membranes. The support media used were not suitable for the production of PSF membranes under the conditions used in this work due to its high porosity. The solution used to crosslink the PVA layer, composed of glutaraldehyde in aqueous solution of acetone, attacked the support media and the PSF membrane, preventing the application of the PVA layer between the PSF and chitosan layers. The use of glutaraldehyde as a chitosan crosslinking agent made the membrane less rough and more hydrophilic. Additionally, increasing glutaraldehyde concentration in the chitosan solution led to a decrease in membrane permeability, which was attributed to a compaction of the membrane structure, leading to a decreased mobility of polymer chains and a decrease in the membrane void volume. Membranes separation capacity was evaluated using two different ionic solutions, magnesium sulphate (MgSO4 1,000 mg/L), and sodium chloride (NaCl 2,000 mg/L). Rejection of bivalent and monovalent ions did not exceed 25% and 12%, respectively. Scanning electron microscopy images showed that the membrane surface crosslinked with 3% glutaraldehyde apparently was not affected by immersion into HCl solution. However, the membranes crosslinked with 1% and 5% glutaraldehyde showed an increase in pore size after immersion, compared to the untreated membrane, suggesting an increased susceptibility to acid attack of the membrane. The potential for glutaraldehyde membrane releasing was evaluated through acute and chronic toxicity assays using Daphnia similis and Ceriodaphnia dubia, respectively. None of tested membranes induced acute or chronic toxicity to the water at which they remained in contact, under tested conditions.
|
10 |
Síntese e caracterização de membranas de filme fino composto de polissulfona/quitosana reticulada com glutaraldeído. / Synthesis and characterization of thin film composite membranes of polysulfone/chitosan crosslinked with glutaraldehyde.Fabiana Tavares Nogueira 18 May 2012 (has links)
Um grande obstáculo a ser vencido para que se tenha uma maior utilização da tecnologia de membranas na purificação de líquidos é o fenômeno do fouling. Como consequência, o desenvolvimento de membranas menos propensas ao fouling é hoje objeto de inúmeras pesquisas. Dentre os processos estudados, tem-se o desenvolvimento de membranas de filme fino composto, que possui como vantagem a possibilidade de se melhorar cada camada de maneira independente, de forma a se aperfeiçoar o desempenho da membrana como um todo. O projeto de pesquisa foi desenvolvido no laboratório do Centro Internacional de Referência em Reúso de Água (CIRRA/IRCWR), uma entidade sem fins lucrativos, vinculado ao Departamento de Engenharia Hidráulica e Ambiental da Escola Politécnica da Universidade de São Paulo (USP). Este teve como objetivo a síntese e a caracterização de membranas de filme fino composto de polissulfona e quitosana reticulada com glutaraldeído. Embora o objetivo principal desse trabalho tenha sido o desenvolvimento de membranas menos propensa ao fouling, a susceptibilidade ao fouling das membranas produzidas foi avaliada de maneira indireta, através da avaliação de propriedades como hidrofilicidade e rugosidade da superfície. Membranas de ultrafiltração a base de polissulfona (PSF) foram produzidas, através do método de separação de fases via imersão-precipitação, para serem usadas como suporte poroso para a camada de quitosana. Nessa etapa, a influência da concentração de PSF na solução polimérica; da temperatura de síntese; da umidade relativa do ar; e do suporte (não-tecido) nas características da membrana foram estudadas. O efeito da aplicação de uma camada de álcool polivinílico, reticulada com glutaraldeído, entre as camadas de PSF e quitosana, como forma de melhorar a estabilidade estrutural da membrana, foi avaliado. Adicionalmente, analisou-se a influência da introdução do glutaraldeído como agente reticulante na solução de quitosana na seletividade; na taxa de permeação; na estabilidade química; e na toxicidade da membrana. Os resultados obtidos mostraram que o aumento da concentração de PSF na solução polimérica, a diminuição da temperatura de síntese e o aumento da umidade do ar levaram à formação de membranas menos porosas. Os suportes de poliéster avaliados, CU414 e CU424 (Crane Nonwovens), embora apresentem características adequadas à produção de membranas, não se mostraram adequados para a síntese de membranas de PSF nas condições avaliadas devido a sua alta porosidade. A solução de reticulação da camada de álcool polivinílico (PVA), composta de glutaraldeído em solução aquosa de acetona, atacou quimicamente o suporte de poliéster e a membrana de polissulfona, inviabilizando a aplicação da camada de PVA entre as camadas de PSF e quitosana. A introdução do glutaraldeído tornou a camada de quitosana menos rugosa e mais hidrofílica. Adicionalmente, o aumento da concentração de glutaraldeído na solução de quitosana levou a um decréscimo na permeabilidade da membrana, o qual foi atribuído à compactação da estrutura da membrana. A reticulação da quitosana com glutaraldeído não levou a uma melhora significativa da capacidade de separação das membranas. A rejeição de ions bivalentes (Mg2+ e SO4 2-) e monovalentes (Na+ e Cl-) não ultrapassou 25% e 12%, respectivamente. Análises de microscopia de eletrônica de varredura realizadas com as membranas reticuladas com glutaraldeído, antes e após sua imersão em solução de HCl, indicaram que a superfície das membranas reticuladas com 3% de glutaraldeído aparentemente não foi afetada pelo ácido, ao contrário das membranas reticuladas com 1% e 5% de glutaraldeído, que apresentaram aumento no tamanho de seus poros. Não foi observada toxicidade aguda e/ou crônica, em relação aos organismos teste Daphinia similis e Ceriodaphinia dubia, respectivamente, em amostras de água que permaneceram em contato com as membranas reticuladas com glutaraldeído. / A major obstacle to be overcome in order to have a greater use of membrane technology in liquids purification is the phenomenon of fouling. As a consequence, the development of membranes less prone to fouling is now the objective of numerous studies. Among the processes evaluated, the development of thin film composite membranes has been the focus of many researches since it is possible to improve each layer independently, in order to improve the membrane performance as a whole. This work aimed to study the synthesis and characterization of thin film composite chitosan, crosslinked with glutaraldehyde, and polysulfone (PSF) membranes. PSF ultrafiltration membranes were produced by phase inversion via immersion precipitation to be used as porous support for the chitosan layer. The influence of PSF concentration in the polymeric solution; temperature of synthesis; air humidity, and membrane nonwoven support, CU414 and CU424 (Crane Nonwovens), on the membrane characteristics and performance were studied. The effect polyvinyl alcohol (PVA), crosslinked with glutaraldehyde, between PSF and chitosan layers, on the cast membrane structural stability was investigated. The influence of glutaraldehyde as a chitosan crosslinking agent on membrane selectivity, permeability, chemical stability, and toxicity was also evaluated. The results showed that increasing PSF concentration, decreasing temperature and increasing air humidity resulted in less porous membranes. The support media used were not suitable for the production of PSF membranes under the conditions used in this work due to its high porosity. The solution used to crosslink the PVA layer, composed of glutaraldehyde in aqueous solution of acetone, attacked the support media and the PSF membrane, preventing the application of the PVA layer between the PSF and chitosan layers. The use of glutaraldehyde as a chitosan crosslinking agent made the membrane less rough and more hydrophilic. Additionally, increasing glutaraldehyde concentration in the chitosan solution led to a decrease in membrane permeability, which was attributed to a compaction of the membrane structure, leading to a decreased mobility of polymer chains and a decrease in the membrane void volume. Membranes separation capacity was evaluated using two different ionic solutions, magnesium sulphate (MgSO4 1,000 mg/L), and sodium chloride (NaCl 2,000 mg/L). Rejection of bivalent and monovalent ions did not exceed 25% and 12%, respectively. Scanning electron microscopy images showed that the membrane surface crosslinked with 3% glutaraldehyde apparently was not affected by immersion into HCl solution. However, the membranes crosslinked with 1% and 5% glutaraldehyde showed an increase in pore size after immersion, compared to the untreated membrane, suggesting an increased susceptibility to acid attack of the membrane. The potential for glutaraldehyde membrane releasing was evaluated through acute and chronic toxicity assays using Daphnia similis and Ceriodaphnia dubia, respectively. None of tested membranes induced acute or chronic toxicity to the water at which they remained in contact, under tested conditions.
|
Page generated in 0.1796 seconds