• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude de la réponse au stress oxydatif de Scedosporium apiospermum, un champignon filamenteux associé à la mucoviscidose / Oxidative stress response of Scedosporium apiospermum, a filamentous fungus associated with cystic fibrosis

Staerck, Cindy 13 December 2017 (has links)
La mucoviscidose est la maladie génétique la plus fréquente dans la population caucasienne. Le genre Scedosporium se situe au deuxième rang parmi les champignons filamenteux isolés des expectorations dans ce contexte. Au niveau pulmonaire, les colonisations/infections entraînent le recrutement de phagocytes qui induisent un stress oxydatif normalement délétère pour les pathogènes. Pour se défendre, ceux-ci ont développé des systèmes antioxydants, notamment diverses enzymes. Ce travail de thèse visait à étudier la réponse au stress oxydatif chez Scedosporium. Tout d’abord, la capacité à germer en présence d’oxydants a été évaluée. Par la suite, trente-trois gènes potentiellement impliqués dans la défense contre le stress oxydatif ont été identifiés. Leur expression en présence d’oxydants et en co-cultures avec des phagocytes suggère un rôle majeur, notamment pour une catalase, une peroxyrédoxine et deux thiorédoxine réductases. Par ailleurs, un mutant défectif pour un gène codant une superoxyde dismutase (SOD) pariétale et spécifique des spores a été produit. L’auranofin, un inhibiteur des thiorédoxine réductases, présente une activité vis-à-vis des Scedosporium et un effet additif avec des triazolés. Un test ELISA a été développé pour le sérodiagnostic des scédosporioses, utilisant une catalase et une Cu/Zn-SOD recombinantes. Ce test sensible et spécifique permet de distinguer les infections à Scedosporium de celles à Aspergillus fumigatus et des colonisations à Scedosporium. Au final, ces résultats indiquent un rôle majeur des enzymes antioxydantes chez Scedosporium, qui pourraient être de véritables facteurs de virulence et donc de nouvelles cibles thérapeutiques. / Cystic fibrosis (CF) is the most common genetic disease in Caucasian populations. The Scedosporium genus ranks the second among the filamentous fungi colonizing the airways of CF patients. In the respiratory tract, colonizations/infections lead to the recruitment of phagocytes which produce an oxidative stress, usually deleterious for pathogens. To defend themselves, pathogens have developed protective antioxidant systems, especially various enzymes. This thesis aimed to study the oxidative stress response in Scedosporium species. First, capacity of several Scedosporium isolates to germinate upon oxidative stress conditions was evaluated. Then, thirty-three genes potentially involved in protection against the oxidative stress were identified. Their overexpression in response to oxidants and in co-cultures with phagocytes suggested a crucial role, especially for one catalase, one peroxiredoxin and the two thioredoxin reductases. A mutant defective for the gene encoding a superoxide dismutase (SOD) anchored to the cell wall and specific for the conidia was produced. Auranofin, a thioredoxin reductase inhibitor, exhibits little anti-Scedosporium activity and an additive effect with triazole drugs. An ELISA was developed for serodiagnosis of scedosporiosis, using recombinant proteins derived from one catalase and a Cu/Zn-SOD. This sensitive and specific assay allows to differentiate Scedosporium infections from Aspergillus fumigatus infections and Scedosporium colonizations. Finally, these results indicate a crucial role of antioxidant enzymes in Scedosporium species, which could therefore be considered as virulence factors and as possible new therapeutic targets.
2

Antioxidant Activity Of The Anti-Inflammatory Compound Ebselen And Its Analogues : Role Of Nonbonded Interactions

Sarma, Bani Kanta 07 1900 (has links)
Although considered as a poison for long time, the importance of selenium as an essential trace element is now well recognized. In proteins, the redox active selenium moiety is incorportated as selenocysteine (Sec), the 21st amino acid. In mammals, selenium exerts its redox activities through several selenocysteine-containing enzymes, which include glutathione peroxidase (GPx), iodothyronine deiodinase (ID) and thioredoxin reductase (TrxR). Although these enzymes have Sec in their active sites, they catalyze completely different reactions and their substrate specificity and cofactor or co-substrate systems are significantly different. The most widely studied selenoenzyme GPx protects various organisms from oxidative stresses by catalyzing the reduction of hydroperoxides by using glutathione (GSH) as cofactor. The chemical aspects of the reduction of hydroperoxide by GPx have been extensively studied with the help of synthetic selenium and tellurium compounds. For example, 2-phenyl, 1, 2-benzoisoselenazol-3(2H)-one, commonly known as ebselen exhibits significant GPx activity by using GSH as cofactor. The anti-inflammatory, antiatherosclerotic and cytoprotective properties of ebselen have led to the design and synthesis of nex GPx mimics for potential therapeutic applications. In the first chapter, the importance of selenium in biochemistry in general and the function of selenoenzyme GPx and its synthetic mimics in particular are discussed. In the second chapter, the importance of ebselen as a GPx mimic and how thiol exchange reaction in the selenenyl sulfide intermediate deactivates its catalytic cycle and the possible ways to overcome thiol exchange reaction are described. The third chapter deals with the first synthetic chemical model that effectively mimics the unusual cyclization of sulfenic acid to a sulfenyl amide in protein Tyrosien Phosphatase 1B(PTP1B). PTP1B is a cysteine containing enzyme where the sulfenic acid (PTP1B-SOH) intermediate produced in response to its oxidation by H2O2 is rapidly converted into a sulfenyl amide species, in which sulfur atom of the catalytic cysteine is covalently bonded to the main chain nitrogen of an adjacent serine residue. This unusual protein modification in PTP1B has been proposed to protect the sulfur centre from irreversible oxidation to sulfinic acid and and sulfonic acids. In the fourth chapter, it is shown that not only the catalytic efficiency of ebselen but also its phosphatase like behavior is important for its antioxidant activity. Ebselen is regenerated from selenenic acid (R-SeOH) under a verity of conditions, which protects its selenium centre from irreversible oxidation and thus reduces its toxicity. The fifth chapter deals with spirodizaselenurane and Spirodiazatellurane. Although the chemistry of spirodioxyselenuranes and spirodiazasulfuranes has been studied extensively due to their interesting structural and stereochemical properties, there is no example of stable spirodiazaselenurane and its tellurium analogues. In the fifth chapter, the synthesis, structure and GPx-like activity of the spirodizzaselenurane and spirodiazatellurane are discussed. In summary, the synthetic sulfenic acids and seleneric acids undergo cyclization to their corresponding sulfenyl amides and selenenyl amides and thus protect their sulfur and selenium centers from irreversible inactivation. We have also observed that selenoxides and telluroxides with nearby amide moieties undergo cyclization to their corresponding cyclic spiro compounds. This unusual transformation of sulfenic acids has been recently discovered in PTP1B. As the redox regulation cycle of PTP1B and the catalytic cycle of GPx are similar we believe that GPx may involve a selenenyl amide intermediate in its catalytic cycle.

Page generated in 0.086 seconds