• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 2
  • Tagged with
  • 13
  • 6
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Comparison Of Thm Formation During Disinfection: Ferrate Versus Free Chlorine For Different Source Waters

Mukattash, Adhem 01 January 2007 (has links)
The objective of the study was to compare the trihalomethanes (THMs) produced from ferrate with hypochlorite and to determine how different the THM production would be for a given degree of disinfection (3 log reduction in Heterotrophic Plate Count (HPC)). Different water samples were collected from Lake Claire, Atlantic Ocean, and secondary effluent from an advanced wastewater treatment plant. THM formation was determined using a standard assay over 7 days at room temperature. In addition samples were tested for Total Coliform Escherichia coli (TC/E.coli), and heterotrophic bacteria using HPC by spreadplating on R2A agar. Dissolved organic carbon (DOC) was measured as well. Dosages of 2, 5, and 10 ppm of hypochlorite and ferrate were used for Lake Claire and Atlantic Ocean water, while 1, 2, and 5 ppm dosages were used for wastewater treatment effluent. Ferrate resulted in 48.3% ± 11.2% less THM produced for the same level of disinfection (i.e. approximately 3 logs reduction in HPC). Oxidation of DOC was relatively small with a 6.1 to 11.6 % decrease in DOC being observed for ferrate doses from 2 to 10 mg/L. Free chlorine oxidation of DOC was negligible.
12

Trihalomethane Removal and Re-Formation in Spray Aeration Processes Treating Disinfected Groundwater

Smith, Cassandra 01 January 2015 (has links)
Historically, chlorination has been widely utilized as a primary and secondary disinfectant in municipal water supplies. Although chlorine disinfection is effective in inactivating pathogenic microbes, the use of chlorine creates the unintentional formation of regulated chemicals. On January 4, 2006, the United States Environmental Protection Agency (EPA) promulgated the Stage 2 Disinfectants/Disinfection by-product rule (DBPR) that focuses on public health protection by limiting exposure to four trihalomethanes (THM) and five haloacetic acids (HAA5), formed when chlorine is used for microbial pathogen control. This thesis examines post-aeration TTHM formation when employing spray-aeration processes to remove semi-volatile TTHMs from chlorinated potable water supplies. A bench scale air stripping unit was designed, constructed and operated to evaluate spray aeration for the removal of the four regulated trihalomethane (THM) species from potable drinking water including bromodichloromethane, bromoform, dibromochloromethane, chloroform. The study was conducted using finished bulk water samples collected from two different water treatment facilities (WTFs) located in Oviedo and Babson Park, Florida. Both treatment plants treat groundwater; however, Oviedo's Mitchell Hammock WTF (MHWTF) supply wells contain dissolved organic carbon and bromide DBP precursors whereas the Babson Park WTF #2 (BPWTF2) supply well contains dissolved organic carbon DBP precursors but is absent of bromide precursor. Three treatment scenarios were studied to monitor impacts on total trihalomethane (TTHM) removal and post-treatment (post-aeration) TTHM formation potential, including 1) no treatment (non-aerated control samples), 2) spray aeration via specially fabricated GridBee® nozzle for laboratory-scale applications, 3) spray aeration via a commercially available manufactured BETE® nozzle used for full-scale applications. Select water quality parameters, chlorine residual, and total trihalomethane concentrations were monitored throughout the study. The GridBee® spray nozzle resulted in TTHM removals ranging from 45.2 ± 3.3% for the BPWTF2 samples, and 37.7 ± 3.1% for the MHWTF samples. The BETE® spray nozzle removed 54.7±3.9% and 48.1±6.6% of total trihalomethanes for the Babson Park and Mitchell Hammock WTF samples, respectively. The lower percent removals at the MHWTF are attributed to the detectable presence of bromide and subsequent formation of hypobromous acid in the samples. Post spray aeration TTHM formation potentials were monitored and it was found that the MHWTF experienced significantly higher formation potentials, once again due to the presence of hypobromous acid which led to increases in overall TTHM formation over time in comparison with the Babson Park WTF #2 TTHM formation samples. In addition, chlorine residuals were maintained post spray aeration treatment, and initial chlorine residual and trihalomethane concentrations did not significantly impact overall spray nozzle performance. Among other findings, it was concluded that spray nozzle aeration is a feasible option for the Babson Park WTF #2 for TTHM compliance. For Oviedo's Mitchell Hammock WTF spray aeration was successful in removing TTHMs, however it was not effective in maintaining DBP rule compliance due to the excessive nature of DBP formation in the water samples. This study was not intended to serve as an assessment of varying nozzle technologies; rather, the focus was on the application of spray aerators for TTHM removal and post-formation in drinking water systems.
13

A Comparison Of Aluminum And Iron-based Coagulants For Treatment Of Surface Water In Sarasota County, Florida

Yonge, David 01 January 2012 (has links)
In this research, five different coagulants were evaluated to determine their effectiveness at removing turbidity, color and dissolved organic carbon (DOC) from a surface water in Sarasota County, Florida. Bench-scale jar tests that simulated conventional coagulation, flocculation, and sedimentation processes were used. Iron-based coagulants (ferric chloride and ferric sulfate) and aluminum-based coagulants (aluminum sulfate, polyaluminum chloride (PACl) and aluminum chlorohydrate (ACH)) were used to treat a highly organic surface water supply (DOC ranging between 10 and 30 mg/L), known as the Cow Pen Slough, located within central Sarasota County, Florida. Isopleths depicting DOC and color removal efficiencies as a function of both pH and coagulant dose were developed and evaluated. Ferric chloride and ACH were observed to obtain the highest DOC (85% and 70%, respectively) and color (98% and 97%, respectively) removals at the lowest dose concentrations (120 mg/L and 100 mg/L, respectively). Ferric sulfate was effective at DOC removal but required a higher concentration of coagulant and was the least effective coagulant at removing color. The traditional iron-based coagulants and alum had low turbidity removals and they were often observed to add turbidity to the water. PACl and ACH had similar percent removals for color and turbidity achieving consistent percent removals of 95% and 45%, respectively, but PACl was less effective than ACH at removing organics. Sludge settling curves, dose-sludge production ratios, and settling velocities were determined at optimum DOC removal conditions for each coagulant. Ferric chloride was found to have the highest sludge settling rate but also produced the largest sludge quantities. Total trihalomethane formation potential (THMFP) was measured iv for the water treated with ferric chloride and ACH. As with DOC removal, ferric chloride yielded a higher percent reduction with respect to THMFP.

Page generated in 0.0496 seconds