• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Effects of combined Zr and Mn additions on the microstructure and properties of AA2198 sheet

Tsivoulas, Dimitrios January 2011 (has links)
The effect of individual and combined zirconium and manganese additions have been compared for an AA2198 6 mm thick sheet in T351 temper regarding their influence primarily on recrystallisation resistance and secondly on fracture toughness and overageing resistance. A complete characterisation of the dispersoid distributions was carried out for a deeper understanding of the effects of the Al3Zr and Al20Cu2Mn3 particles, involving studying their formation from the as-cast and homogenised stage.The most important finding in this work was the lower recrystallisation resistance in the alloy containing 0.1 wt%Zr + 0.3 wt%Mn compared to that containing only 0.1 wt%Zr. This result was rather unexpected, if one considers the opposite microsegregation patterns of Zr and Mn during casting, which leads to dispersoids occupying the majority of the grains’ volume and minimising dispersoid-free zones that could be potential sites for nucleation of recrystallisation. The other two alloys with dispersoid additions 0.05 wt%Zr + 0.3 wt%Mn and 0.4 wt%Mn, were partially and fully recrystallised respectively in the rolled T351 condition.Equally important in this work, was the observation that the opposite microsegregation trend of Zr and Mn sufficed to restrict grain growth in unrecrystallised areas. The 0.1Zr-0.3Mn alloy exhibited the lowest grain size of all alloys, both in the T351 temper and after annealing at 535oC for up to 144 hours. The reason for this was the combined action of Al20Cu2Mn3 dispersoids and Mn solute in the regions where the Zr concentration was low (i.e. near the grain boundaries), which offered additional pinning pressure to those areas compared to the 0.1Zr alloy.The lower recrystallisation resistance of the 0.1Zr-0.3Mn alloy was explained on the grounds of two main factors. The first was the lower subgrain size and hence stored energy within bands of Al20Cu2Mn3 dispersoids, which increased the driving force for recrystallisation in these regions. The second was the interaction between Zr and Mn that led to a decrease in the Al3Zr number density and pinning pressure. Since Zr was the dominant dispersoid family in terms of inhibiting recrystallisation, inevitably this alloy became more prone to recrystallisation. The Al3Zr pinning pressure was found to be much lower especially within bands of Al20Cu2Mn3 dispersoids. The detrimental effect of the Mn addition on the Al3Zr distribution was proven not to result from the dissolution of Zr within Mn-containing phases, and several other phases, at the grain interior and also in grain boundaries. The observed effect could not be precisely explained at this stage.Concerning mechanical properties, the 0.1Zr alloy exhibited the best combination of properties in the Kahn tear tests for fracture toughness. Further, it had a higher overageing resistance compared to the 0.1Zr-0.3Mn alloy.As an overall conclusion from this work, considering all the studied properties here that are essential for damage tolerant applications, the addition of 0.1 wt%Zr to the AA2198 6 mm thick sheet was found to be superior to that of the combined addition of 0.1 wt%Zr + 0.3 wt%Mn.
12

Phase-field modeling of brittle fracture along the thickness direction of plates and shells

Ambati, Marreddy, Heinzmann, Jonas, Seiler, Martha, Kästner, Markus 22 January 2024 (has links)
The prediction of fracture in thin-walled structures is decisive for a wide range of applications. Modeling methods such as the phase-field method usually consider cracks to be constant over the thickness which, especially in load cases involving bending, is an imperfect approximation. In this contribution, fracture phenomena along the thickness direction of structural elements (plates or shells) are addressed with a phase-field modeling approach. For this purpose, a new, so called “mixed-dimensional” model is introduced, which combines structural elements representing the displacement field in the two-dimensional shell midsurface with continuum elements describing a crack phase-field in the three-dimensional solid space. The proposed model uses two separate finite element discretizations, where the transfer of variables between the coupled twoand three-dimensional fields is performed at the integration points which in turn need to have corresponding geometric locations. The governing equations of the proposed mixed-dimensional model are deduced in a consistent manner from a total energy functional with them also being compared to existing standard models. The resulting model has the advantage of a reduced computational effort due to the structural elements while still being able to accurately model arbitrary through-thickness crack evolutions as well as partly along the thickness broken shells due to the continuum elements. Amongst others, the higher accuracy aswell as the numerical efficiency of the proposed model are tested and validated by comparing simulation results of the new model to those obtained by standard models using numerous representative examples.

Page generated in 0.0312 seconds