• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 149
  • 25
  • 23
  • 11
  • 7
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 311
  • 70
  • 58
  • 43
  • 39
  • 35
  • 29
  • 29
  • 27
  • 27
  • 26
  • 25
  • 23
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Immediate Effects of a Seated versus Supine Upper Thoracic Spine Thrust Manipulation Compared to Sham Manipulation in Individuals with Subacromial Pain Syndrome – A Randomized Clinical Trial

Grimes, Jason Keith 01 January 2017 (has links)
Background: Individuals with Subacromial Pain Syndrome (SPS) often present with a variety of contributing factors. It is possible that a subgroup exists within SPS that has primary impairments of scapular mobility and/or muscle strength. In an attempt to better identify scapular contributions in SPS, the Scapular Assistance Test (SAT) and Scapula Reposition Test (SRT) have been described. Additionally, thoracic spine thrust manipulation has been shown to be effective for shoulder pain. Problem Statement: It is currently unknown whether or not there are impairments in scapulothoracic muscle force generation or scapular mobility in individuals with SPS who have positive results on the SAT and SRT. It also remains unknown whether individuals with SPS respond differently in the immediate effects on scapular motion, scapulothoracic muscle force generation, pain, or function following different manipulation techniques. Methodology: Sixty subjects with shoulder pain were enrolled in the study. Baseline measures were obtained for scapular upward rotation and posterior tilt, scapulothoracic muscle force generation, pectoralis minor muscle length, pain, and function. Participants were randomized to receive a seated thrust manipulation, supine thrust manipulation, or sham manipulation. Measures were reassessed immediately after treatment and the Penn Shoulder Score (PSS) was reassessed at 48 hours. Results: The results indicated no significant differences in scapular upward rotation or posterior tilt, or muscle force generation based on the results of the SAT or SRT. There was a small but significant difference in pectoralis minor muscle length based on the result of the SAT. There were no significant between-group differences in scapular motion, muscle force generation, or pectoralis minor muscle length based on the treatment received. There were no significant differences in 48-hour improvement in pain, function, satisfaction, and total PSS scores. Small but significant within group changes existed on several measures. Discussion: The SAT and SRT may be ineffective in differentiating scapular movement associated impairments. Thoracic spine thrust manipulation resulted in no greater immediate improvements in scapular motion, strength, pectoralis minor muscle length, pain, or function compared to a sham treatment. The improvements in pain and function are likely not biomechanical in nature and are likely not derived from the manipulative thrust.
162

Stratégies de maintien à poste pour un satellite géostationnaire à propulsion tout électrique / Station keeping strategies for geostationary satellites equipped with electric propulsion

Gazzino, Clément 25 January 2018 (has links)
Pour mener à bien leur mission, les satellites de télécommunications doivent rester à la verticale d'un même point de la Terre, sur une orbite dite géostationnaire, pour laquelle la période de révolution des satellites sur leur orbite est identique à la période de rotation de la Terre sur elle-même. Cependant, à cause des perturbations orbitales, les satellites tendent à s'en éloigner, et il est alors nécessaire de concevoir des stratégies de commande pour les maintenir dans un voisinage de cette position de référence. Du fait de leur grande valeur de poussée, les systèmes à propulsion chimique ont largement été utilisés, mais aujourd'hui les systèmes à propulsion électrique avec leur grande impulsion spécifique sont des alternatives viables pour réduire la masse d'ergols du satellite, et ainsi le coût au lancement, ou allonger la durée de vie du satellite, ce qui permettrait de limiter l'encombrement dans l'espace. Cependant, l'utilisation d'un tel système propulsif induit des contraintes opérationnelles issues en partie du caractère limité de la puissance électrique disponible à bord. Ces contraintes sont difficiles à prendre en compte dans la transcription du problème de maintien à poste en un problème de contrôle optimal à consommation minimale avec contraintes sur l'état et le contrôle. Ce manuscrit propose deux approches pour résoudre ce problème de commande optimale. La première, basée sur le développement et l'exploitation de conditions nécessaires d'optimalité, consiste à découper le problème initial en trois sous-problèmes pour former une méthode de résolution à trois étapes. La première étape permet de résoudre un problème de maintien à poste expurgé des contraintes opérationnelles, tandis que la deuxième, initialisée par le résultat de la première, produit une solution assurant le respect de ces dernières contraintes. La troisième étape permet d'optimiser la valeur des instants d'allumage et d'extinction des propulseurs dans le cadre du formalisme des systèmes à commutation. La seconde approche, dite " directe ", consiste à paramétrer le profil de commande par une fonction binaire et à le discrétiser sur l'horizon temporel de résolution. Les contraintes opérationnelles sont ainsi facilement transcrites en contraintes linéaires en nombres entiers. Après l'intégration numérique de la dynamique, le problème de contrôle optimal se résume à un problème linéaire en nombres entiers. Après la résolution du problème de maintien à poste sur un horizon court d'une semaine, le problème est résolu sur un horizon long d'un an par résolutions successives sur des horizons courts d'une durée de l'ordre de la semaine. Des contraintes de fin d'horizon court doivent alors être ajoutées afin d'assurer la faisabilité de l'enchaînement des problèmes sur l'horizon court constituant le problème sur l'horizon long. / Geostationary spacecraft have to stay above a fixed point of the Earth, on a so-called geostationary Earth orbit. For this orbit, the orbital period of the spacecraft is equal to the rotation period of the Earth. Because of orbital disturbances, spacecraft drift away their station keeping position. It is therefore mandatory to create control strategies in order to make the spacecraft stay in the vicinity of the station keeping position. Due to their high thrust capabilities, chemical thrusters have been widely used. However nowadays electric propulsion based thrusters with their high specific impulse are viable alternative in order to decrease the spacecraft mass or increase its longevity. The use of such a system induce the necessity to handle operational constraints because of the limited on-board power. These operational constraints are difficult to take into account in the mathematical transcription of the station keeping problem in an optimal control problem with control and state constraints. This thesis proposed two techniques in order to solve this optimal control problem. The first one is based on the computation of first order necessary conditions and consists in decomposing the overall problem in three sub-problems, leading to a three-step decomposition method. The first step solves an optimal control problem without the operational constraints. The second steps enforces these operational constraints thanks to dedicated equivalence schemes and the third one optimises the switching times of the control profile thanks to a method borrowed from the switched systems theory. The second proposed method consists in parametrising the on-off control profile with binary functions. After a time discretisation of the station keeping horizons, the operational constraints are easily recast as linear constraints on integer variables, the dynamics is numerically integrated and the station keeping problem is recast as a mixed integer linear programming problem. After the resolution of the problem over a short time horizon of one week, the station keeping problem is solved over a long time horizon of one year. To this end, the long time horizon is split in shorter horizons over which the problem is successively solved. End-of-cycle constraints have been set up in order to ensure the feasibility of the solution one short horizon after another.
163

Parameter Estimation of Fundamental Technical Aircraft Information Applied to Aircraft Performance

Vallone, Michael 01 September 2010 (has links) (PDF)
Inverse problems can be applied to aircraft in many areas. One of the disciplines within the aerospace industry with the most openly published data is in the area of aircraft performance. Many aircraft manufacturers publish performance claims, flight manuals and Standard Aircraft Characteristics (SAC) charts without any mention of the more fundamental technical information of the drag and engine data. With accurate tools, generalized aircraft models and a few curve-fitting techniques, it is possible to evaluate vehicle performance and estimate the drag, thrust and fuel consumption (TSFC) with some accuracy. This thesis is intended to research the use of aircraft performance information to deduce these aircraft--specific drag and engine models. The proposed method incorporates models for each performance metric, modeling options for drag, thrust and TSFC, and an inverse method to match the predicted performance to the actual performance. Each of the aircraft models is parametric in nature, allowing for individual parameters to be varied to determine the optimal result. The method discussed in this work shows both the benefits and pitfalls of using performance data to deduce engine and drag characteristics. The results of this method, applied to the McDonnell Douglas DC-10 and Northrop F-5, highlight many of these benefits and pitfalls, and show varied levels of success. A groundwork has been laid to show that this concept is viable, and extension of this work to additional aircraft is possible with recommendations on how to improve this technique.
164

Two-Dimensional Hydrodynamics of Swimming Rainbow Trout Using Navier-Stokes and Large Eddy Simulation Models

Chipman, Donovan R. 14 July 2011 (has links) (PDF)
Energy efficiency and propulsive characteristics of a 10 cm undulatory rainbow trout (oncorhynchus mykiss) swimming in a stationary position are considered. Two CFD simulations are performed utilizing dynamic grid meshing (FLUENT 6.3). The first simulation uses a laminar flow model with an added hydrofoil shape in order to test if thrust and drag can be brought to unity. The second simulation uses a Large-Eddy Simulation (LES) turbulence model to determine if transition to turbulence along the fish's surface leads to boundary layer separation. The expected results caused by adding these two features to earlier simulations do not occur. Thrust and drag are not found to be equal with usage of the thicker fish shape; instead both thrust and drag increase by 40-80% while diverging in value. Evidence of boundary layer separation is not present with usage of the LES turbulence model. Swimming energy efficiency is calculated to be 70% in both simulations. A brief analyses of boundary layer and downstream wake are included, showing general agreement with earlier studies. Limitations of the simulation are discussed. Future work regarding the author's preparation for an additional simulation of a rainbow trout utilizing a swimming method known as the Karman Gait is also considered. This preparation includes the creation of a 2-D grid domain and programs to define the kinematics of the fish and produce a specified vortex inlet condition.
165

Geology of the Birdseye 7.5-Minute Quadrangle, Utah County, Utah:Â Implications for Mid-Cenozoic Extension and Deposition of the Moroni Formation

Bagshaw, Don L. 12 December 2013 (has links) (PDF)
Geologic structures within the Birdseye 7.5 minute quadrangle Utah County, Utah have been related by previous workers to both the Jurassic Arapien Shale diapirism and to the mid-Cenozoic extensional collapse of the Charleston-Nebo Thrust. Whichever model proves valid, it will have implications for oil exploration and interpretation of the subsurface geologic structure in the region. A detailed map of the quadrangle was constructed to better constrain which mechanism was responsible for the deformation. Exposures of Arapien Shale near, and within the Birdseye quadrangle show no evidence of diapiric movement. Arapien involvement in the deformation of Tertiary rocks in the center of the quadrangle is therefore unlikely. Changes in the pattern of sedimentation of Eocene age rocks suggest a change in tectonics during this time. Restoration of the Eocene strata shows that the most plausible mechanism for this deformation is extension along reactivated thrusts in the Arapien Shale, Thaynes Formation, and Woodside Shale, related to Basin and Range extension. The Moroni Formation, a prominent Tertiary volcanic unit present throughout the Birdseye quadrangle, has been used to justify Eocene extension. Deformation with the formation was found to be present only along the Thistle Canyon normal fault, constraining movement along the fault to the Eocene and later. Dip and facies relationships present within the formation mainly are a result of paleotopography rather than extension. Several distinctive units were mapped within the formation, including lahar and fluvial deposits, as well as two different ash-flow tuffs. A depletion in nickel and chromium, an unusually ferroan composition, and distinctive Fe/Ti ratios suggest that the volcaniclastic rocks of the Moroni Formation are similar to volcanic rocks in the Slate Jack Canyon and Goshen quadrangles which lie about 35 km to the west. This implies that the ignimbrites and volcanic clasts in the Moroni Formation were sourced from the East Tintic volcanic center. It further implies that any mid-Tertiary extension between the East Tintic center and the Birdseye quadrangle did not create barriers to sedimentation and was limited in extent.
166

Axisymmetric Air Augmented Methanol/Gox Rocket Mixing Duct Experimental Thrust Study

Johnson, Kyle Jacob 01 March 2013 (has links) (PDF)
A hot-flow axisymmetric Air Augmented Rocket (AAR) test apparatus was constructed to test various mixing duct configurations at static conditions. Primary flow for the AAR was provided through a liquid methanol-gaseous oxygen bipropellant rocket. Experimental thrust measurements were recorded and propellant mass flow rates and chamber conditions were calculated using an iterative solver dependant on recorded propellant line stagnation pressures. Primary rocket flow produced thrust ranging from 14 to 17.9lbf. Primary mass flow rate through testing ranged from 0.071 to 0.085lbm/s with calculated chamber pressures between 298-362psia. Calculated primary flow velocity ranged from 6,600ft/s to 8,000ft/s depending on propellant pressure inputs and calculated chamber conditions. The AAR test apparatus was capable of testing various mixing duct geometries and measuring the axial thrust of the mixing ducts separately from the total thrust of the system. Two mixing duct geometries, a straight wall mixing duct and diverging wall mixing duct, with identical exterior dimensions and inlet geometry were tested for a range of air/fuel mixture ratios from 0.82 to 2.2 spanning the stoichometric mixture ratio of 1.5. Mixing duct thrust did not vary greatly with primary flow characteristics. Straight mixing duct thrust averaged 0.97lbf and diverging mixing duct thrust averaged 0.18lbf. Total system thrust decreased by an average of 0.62lbf with a straight mixing duct and 0.74lbf with a diverging mixing duct. Decreases in total thrust are attributed to low pressure flow interaction between the mixing duct and the primary rocket assembly. Visual flow comparison between mixing duct configurations and fuel ratio cases were carried out using high definition video recording with a grid reference for comparison. The diverging mixing duct produced the greatest variation in visible flow when compared to a straight mixing duct and no mixing duct configuration. This indicated that the diverging mixing duct had a greater influence on primary and secondary flow field mixing than the straight mixing duct.
167

Interior Point Optimization of Low-Thrust Spacecraft Trajectories

Frederiksen, Jordan D 01 August 2021 (has links) (PDF)
Low-thrust interplanetary spacecraft trajectory optimization poses a uniquely difficult problem to solve because of the inherent nonlinearities of the dynamics and constraints as well as the large size of the search space of possible solutions. Tools currently exist that optimize low-thrust interplanetary trajectories, but these tools are rarely openly available to the public, and when they are available they require multiple interfaces between multiple different packages. The goal of this work is to present a new piece of low-thrust interplanetary spacecraft trajectory optimization software that is open-source and entirely self-contained so that more people can have access to the ability to design interplanetary trajectories. To achieve this goal, a gradient-descent based nonlinear programming method, called the interior point method, was used. The nonlinear programming method was chosen so that results from this work could be compared and contrasted with results from Spacecraft Trajectory Optimization Suite (STOpS), which uses heuristics to iterate towards a solution. Interior point methods are popular because of their ability to handle large amounts of equality and inequality constraints, which is a characteristic that is valuable for low-thrust interplanetary spacecraft trajectories. The software developed, Interior Point Optimizer (IP Optimizer), was then validated against test cases with known solutions to ensure that the software delivered the intended results. Lastly, a constraint satisfaction, a minimum-time, and a maximum-final-mass optimization problem were solved and compared with literature to illustrate the advantages of IP Optimizer and the methods it employs. For the constraint satisfaction problem, IP Optimizer was able to find a solution that exactly satisfied the desired terminal constraints whereas STOpS had an error of 2.29 percent. In this case, IP Optimizer had a reduced runtime of 15 percent compared to STOpS as well. When minimizing time for a spacecraft transfer, IP Optimizer improved upon the solution found by STOpS by 5.3 percent. The speed of convergence for IP Optimizer was almost twice as fast as STOpS for this case. These results show that IP Optimizer is faster than STOpS at converging on a solution and the solution it converges to has a better objective value and more accurately satisfies the terminal constraints than STOpS. Lastly, the maximum-final-mass problem resulted in an objective value that was only 0.5 percent lower than the value found in literature.
168

A Study of Some Aspects of Numerically Controlled Machine Tools

Heideman, Murdoch 11 1900 (has links)
<p> This thesis is a study of numerically controlled machine tools (NCMT), and is divided into four sections. </p> <p> Section A is a literature survey of current concepts, criteria and techniques in design of MCMT structures and drives. Several of the authors own ideas are also included. </p> <p> Section B deals with NCMT manual and computer aided programming techniques. The structure and function of post processors is also covered. </p> <p> Section C is a practical combination of computer design optimization and numerical control manufacture. In an example the geometrical dimensions of a hydrostatic thrust bearing are optimized and used as an input to a generalized APT programme, written to produce a numerical control tape for manufacture of this bearing type. </p> <p> Section D is the discussion and conclusion. </p> / Thesis / Master of Engineering (MEngr)
169

Experimental investigations of the Mach-effect for breakthrough space propulsion

Monette, Maxime 26 October 2023 (has links)
This research was conducted within the framework of the SpaceDrive project funded by the German Aerospace Center to develop propellantless propulsion for interstellar travel. The experiments attempted to measure mass fluctuations predicted by the Mach-effect theory derived from General Relativity and observed through torsion balance measurements by Woodward (2012). The combination of such mass fluctuations with synchronized actuation promises propellantless thrust with a significantly better thrust-to-power ratio than photon sails. Thus, experiments using different electromechanical devices including the piezoelectric Mach-effect thruster as tested by Woodward et al. (2012) were pursued on sensitive thrust balances. The tests were automated, performed in vacuum and included proper electromagnetic shielding, calibrations, and different dummy tests. To obtain appropriate driving conditions for maximum thrust, characterization of the experimental devices involved spectrometry, vibrometry, finite element analysis, and circuit modeling. Driving modes consisted of sweeps, resonance tracking, fixed frequency, and mixed signals. The driving voltage, frequency, stack pre-tension, mounting, and thruster orientation were also varied. Lastly, different amplifier electronics were tested as well, including Woodward’s original equipment. Experiments on the double-pendulum and torsion balances with a resolution of under 10 nN and an accuracy of 88.1 % revealed the presence of force peaks with a maximum amplitude of 100 nN and a drift of up to 500 nN. The forces mainly consisted of switching transients whose signs depended on the device’s orientation. These force transients were also observed in the zero-thrust configurations. No additional thrust was observed above the balance drift, regardless of the driving conditions or devices tested. In addition, finite element and vibrometry analysis revealed that the vibration from the actuator was transmitted to the balance beam. Moreover, simulations using a simple spring-mass model showed that the slower transient effects observed can be reproduced using small amplitude, high-frequency vibrations. Hence, the forces observed can be explained by vibrational artifacts rather than the predicted Mach-effect thrust. Then, centrifugal balance experiments measured the mass of a device subjected to rotation and energy fluctuations, with a precision of up to 10 µg and a high time resolution. The measurements relied on piezoelectric- and strain gauges. Their calibration methods presented limitations in the frequency range of interest, resulting in discrepancies of up to 500 %. However, the tests conducted with capacitive and inductive test devices yielded experimental artifacts about three orders of magnitude below the mass fluctuations of several milligrams predicted by the Mach-effect theory. Although the piezoelectric devices presented more artifacts due to nonlinearity and electromagnetic interaction, all rotation experiments did not show the expected dependence on the rotation frequency. In summary, the search for low thrust and small mass fluctuations consisted of challenging experiments that led to the development of innovative and sensitive instruments, while requiring a careful consideration of experimental artifacts. The results analysis led to the rejection of mass fluctuations and thrusts claimed by Woodward’s Mach-effect theory and experiments. The quest for breakthrough space propulsion must thus continue a different theoretical or experimental path.:List of Figures List of Tables List of Abbreviations List of Variables and Symbols 1. Introduction 1.1 Research Motivation 1.2 Objectives 1.3 Content Overview 1.4 Team Work 2. Literature Review 2.1 Fundamentals of Space Propulsion 2.2 Mach’s Principle 2.3 Woodward’s Mach-effect Theory 2.3.1 Derivation of the Mass Fluctuation Equation 2.3.2 Design of a Mass Fluctuation Thruster 2.4 Woodward-type Experiments 2.5 Force and Transient Mass Measurements 3. Electromechanical Characterization 3.1 Piezoelectric Actuators 3.1.1 Basic Properties 3.1.2 Actuator Design 3.1.3 Mach-effect Thruster Devices 3.1.4 Magnetostrictive Actuator 3.1.5 Numerical Analysis of MET Behavior 3.1.6 Vibrometry Analysis 3.1.7 Impedance Spectroscopy 3.1.8 Circuit Modeling 3.1.9 Predictions 3.2 Electronics 3.2.1 Description 3.2.2 Characterization 3.3 Torsion Balances 3.3.1 Description 3.3.2 Characterization 3.3.3 Simulation 3.4 Double-pendulum Balance 3.4.1 Description 3.4.2 Characterization 3.5 Laboratory Setup 3.5.1 Vacuum Chambers 3.5.2 Software and Test Setup 4. Thrust Balance Experiments 4.1 Torsion Balance I Test Results 4.1.1 Dummy Tests 4.1.2 CU18A 4.1.3 MET03 4.1.4 MET04 4.1.5 Discussion 4.2 Torsion Balance II Test Results 4.2.1 Dummy Tests 4.2.2 MET05 4.2.3 Beam Vibration 4.2.4 Discussion 4.3 Double-pendulum Balance Test Results 4.3.1 Dummy Tests 4.3.2 MET03 4.3.3 Discussion 5. Centrifugal Balance Experiments 5.1 Centrifugal Balance 5.1.1 Description 5.1.2 Centrifugal Devices 5.1.3 Predictions 5.2 Transducer Calibration 5.2.1 Quasi-Static Calibration I 5.2.2 Quasi-Static Calibration II 5.2.3 Dynamic Calibration 5.3 Centrifugal Balance Test Results 5.3.1 Characterization 5.3.2 CD01 5.3.3 CD02 5.3.4 CD03 5.3.5 CD04 5.3.6 CD05 5.4 Discussion & Error Analysis 6 Conclusions 6.1 Research Summary 6.2 Further Research Appendix A Appendix B Bibliography
170

Computational Studies of Fully Submerged Bodies, Propulsors, and Body/Propulsor Interactions

Cash, Allison Nicole 14 December 2001 (has links)
Difficulties exist with designing and testing on a model scale. The purpose of this study is to examine variations in the flow field of a submarine due to hull/propulsor interaction and Reynolds scaling. The scope of this study includes the simulation of the flow past a 1) five-bladed marine propeller with 0° skew, 2) unappended submarine hull, 3) forward propelled submarine with asymmetrical stern appendages, and 4) submarine in crashback with asymmetrical stern appendages. The bare hull simulations are conducted for three different length scales: small model scale, large model scale, and full scale. The isolated propeller and appended submarine simulations are conducted on the large model scale. It is of interest how sensitive the various flow characteristics are to Reynolds number and the turbulence model. All simulations are at 0° angle of attack, and validated with experimental data where available.

Page generated in 0.0291 seconds