• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 148
  • 25
  • 23
  • 11
  • 7
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 309
  • 69
  • 58
  • 42
  • 38
  • 35
  • 29
  • 28
  • 27
  • 27
  • 26
  • 25
  • 23
  • 23
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

The effects of basal friction and basement configuration on deformation of fold-and-thrust belts: insights from analogue modeling

Xue, Kai January 2012 (has links)
This thesis discusses the effects of basal friction and basement configuration on the deformation of the fold-and-thrust belts in convergent zones. A series of analogue models were conducted with adjacent different basal configuration and frictional properties to observe and gain a better understanding of these basal effects and their interactions. The results from these side-by-side systematic models demonstrate that the kinematics and geometry of the deformation wedges are strongly influenced by the mechanical and geometrical basal effects. In these experiments, high accuracy laser scanner and digital camera were used to record the evolution of the surface topography of the deformed sand packs. Comparison between models with different basal friction shows that the basal friction plays a significant role on the propagation and topography of the deformation structures in aspects such as wedge height, taper angle, number of imbricates and deformation front. The models with a basal viscous material, which acts as low friction substrate, illustrates that the propagation of deformation above viscous material is faster and further than above the adjacent mechanically different frictional decollement. In the experiments with a moving plate under the part of the sand pack, the velocity discontinuity was introduced by either rigid, i.e. frontal edge of the metal plate, or deformable like distal end of the viscous materials. The results of these kinds of experiments, applicable to for example basement faults, salt decollements and tectonic underplating simulations, illustrate that the deformation localizes and develops continuously above the velocity discontinuities. Besides, the different rate and distance of the propagation of deformation fronts caused by different substrate distribution between the adjacent zones also lead to the formation of transpressive zones at the boundary of these adjacent domains with different basal friction/configurations.
62

The conceptual design of novel future UAV's incorporating advanced technology research components

Clarke, Adrian James January 2011 (has links)
There is at present some uncertainty as to what the roles and requirements of the next generation of UAVs might be and the configurations that might be adopted. The incorporation of technological features on these designs is also a significant driving force in their configuration, efficiency, performance abilities and operational requirements. The objective of this project is thus to provide some insight into what the next generation of technologies might be and what their impact would be on the rest of the aircraft. This work involved the conceptual designs of two new relevant full-scale UAVs which were used to integrate a select number of these advanced technologies. The project was a CASE award which was linked to the Flaviir research programme for advanced UAV technologies. Thus, the technologies investigated during this study were selected with respect to the objectives of the Flaviir project. These were either relative to those already being developed as course of the Flaviir project or others from elsewhere. As course of this project, two technologies have been identified and evaluated which fit this criterion and show potential for use on future aircraft. Thus we have been able to make a contirubtion knowledge in two gaps in current aerospace technology. The first of these studies was to investigate the feasibility of using a low cost mechanical thrust vectoring system as used on the X-31, to replace conventional control surfaces. This is an alternative to the fluidic thrust vectoring devices being proposed by the Flaviir project for this task. The second study is to investigate the use of fuel reformer based fuel cell system to supply power to an all-electric power train which will be a means of primary propulsion. A number of different fuels were investigated for such a system with methanol showing the greatest promise and has been shown to have a number of distinct advantages over the traditional fuel for fuel cells (hydrogen). Each of these technologies was integrated onto the baseline conceptual design which was identified as that most suitable to each technology. A UCAV configuration was selected for the thrust vectoring system while a MALE configuration was selected for the fuel cell propulsion system. Each aircraft was a new design which was developed specifically for the needs of this project. Analysis of these baseline configurations with and without the technologies allowed an assessment to be made of the viability of these technologies. The benefits of the thrust vectoring system were evaluated at take-off, cruise and landing. It showed no benefit at take-off and landing which was due to its location on the very aft of the airframe. At cruise, its performance and efficiency was shown to be comparable to that of a conventional configuration utilizing elevons and expected to be comparable to the fluidic devices developed by the Flaviir project. This system does however offer a number of benefits over many other nozzle configurations of improved stealth due to significant exhaust nozzle shielding.The fuel reformer based fuel cell system was evaluated in both all-electric and hybrid configurations. In the ell-electric configuration, the conventional turboprop engine was completely replaced with an all-electric powertrain. This system was shown to have an inferior fuel consumption compared to a turboprop engine and thus the hybrid system was conceived. In this system, the fuel cell is only used at loiter with the turboprop engine being retained for all other flight phases. For the same quantity of fuel, a reduction in loiter time of 24% was experienced (compared to the baseline turboprop) but such a system does have benefits of reduced emissions and IR signature. With further refinement, it is possible that the performance and efficiency of such a system could be further improved. In this project, two potential technologies were identified and thoroughly analysed. We are therefore able to say that the project objectives have been met and the project has proven worthwhile to the advancement of aerospace technology. Although these systems did not provide the desired results at this stage, they have shown the potential for improvement with further development.
63

Autonomous Control of a Differential Thrust Micro ROV

Wang, Wei 22 January 2007 (has links)
Underwater vehicles that use differential thrust for surge and yaw motion control have the advantage of increased maneuverability. Unfortunately, such vehicles usually don’t have thrusters/actuators to control the lateral movements. Hence, they fall into the underactuated vehicle category. The goal of the work in this thesis is to develop an autonomous control system for a differential thrust underwater remotely operated vehicle (ROV) to track predefined position trajectories. This is challenging because the mathematical model for underwater vehicles is highly nonlinear and the environmental disturbances are usually strong and unpredictable. These factors make the design of the control system very difficult. In this work, we use the VideoRay Pro III micro ROV as the test platform, on which we design an autonomous control system. We first present the development and analysis of a hydrodynamic model of the VideoRay Pro III using both analytical and experimental approaches. Based on this model, a state estimator is then designed using the unscented Kalman filter, which yields better estimates of the system states and their uncertainty level in a highly nonlinear system than the commonly used extended Kalman filter. In the controller design, the integrator backstepping technique is used to achieve a Lyapunov stable trajectory tracking controller based on the work by A. P. Aguiar et al. We extended their work by further considering the quadratic drag terms in the vehicle’s hydrodynamic model. The sliding mode control is used to design the bearing and depth controller. Finally, the autonomous control system is validated by simulation and experimental tests. It is shown that the VideoRay Pro III is able to track the predefined trajectory within error range of 0.5 meters.
64

Autonomous Control of a Differential Thrust Micro ROV

Wang, Wei 22 January 2007 (has links)
Underwater vehicles that use differential thrust for surge and yaw motion control have the advantage of increased maneuverability. Unfortunately, such vehicles usually don’t have thrusters/actuators to control the lateral movements. Hence, they fall into the underactuated vehicle category. The goal of the work in this thesis is to develop an autonomous control system for a differential thrust underwater remotely operated vehicle (ROV) to track predefined position trajectories. This is challenging because the mathematical model for underwater vehicles is highly nonlinear and the environmental disturbances are usually strong and unpredictable. These factors make the design of the control system very difficult. In this work, we use the VideoRay Pro III micro ROV as the test platform, on which we design an autonomous control system. We first present the development and analysis of a hydrodynamic model of the VideoRay Pro III using both analytical and experimental approaches. Based on this model, a state estimator is then designed using the unscented Kalman filter, which yields better estimates of the system states and their uncertainty level in a highly nonlinear system than the commonly used extended Kalman filter. In the controller design, the integrator backstepping technique is used to achieve a Lyapunov stable trajectory tracking controller based on the work by A. P. Aguiar et al. We extended their work by further considering the quadratic drag terms in the vehicle’s hydrodynamic model. The sliding mode control is used to design the bearing and depth controller. Finally, the autonomous control system is validated by simulation and experimental tests. It is shown that the VideoRay Pro III is able to track the predefined trajectory within error range of 0.5 meters.
65

Optimal dimensionless design and analysis of jet ejectors as compressors and thrust augmenters

Mohan, Ganesh 16 August 2006 (has links)
A jet ejector may be used as a compressor or to enhance thrust of watercraft or aircraft. Optimization of jet ejectors as compressors and thrust augmenters was conducted using the software GAMBIT (Computer Aided Engineering (CAE) tool for geometry and mesh generation) and FLUENT (Computational Fluid Dynamics (CFD) solver kit). Scripting languages PYTHON and SCHEME were used to automate this process. The CFD model employed 2D axis symmetric, steady-state flow using the ε−k method (including wall functions) to model turbulence. Initially, non-dimensionalization of the jet ejector as a gas compressor was performed with respect to scale, fluid, and operating pressure. Surprisingly, rather than the conventional parameters like Mach or Re number, the results showed a completely new parameter (christenedGM- Gauge Mach) that when kept constant will result in non-dimensionalization. Non-dimensionalization of a jet ejector for watercraft propulsion was conducted using 2D axis symmetric, steady-state flow modeling using the ε−kmethod (including wall functions). It showed consistent results for the same velocity ratio (r) of nozzle velocity to free-stream velocity for different scales, fluids, and ambient pressures.
66

Numerical simulation of steady and unsteady cavitating flows inside water-jets

Chang, Shu-Hao 03 October 2012 (has links)
A numerical panel method based on the potential flow theory has been refined and applied to the simulations of steady and unsteady cavitating flows inside water-jet pumps. The potential flow inside the water-jet is solved simultaneously in order to take the interaction of all geometries (blades, hub and casing) into account. The integral equation and boundary conditions for the water-jet problem are formulated and solved by distributing constant dipoles and sources on blades, hub and shroud surfaces, and constant dipoles in the trailing wake sheets behind the rotor (or stator) blades. The interaction between the rotor and stator is carried out based on an iterative procedure by considering the circumferentially averaged velocities induced on each one by the other. The present numerical scheme is coupled with a 2-D axisymmetric version of the Reynolds Averaged Navier-Stokes (RANS) solver to evaluate the pressure rise on the shroud and simulate viscous flow fields inside the pump. A tip gap model based on a 2-D orifice equation derived from Bernoulli’s obstruction theory is implemented in the present method to analyze the clearance effect between the blade tip and the shroud inner wall in a global sense. The reduction of the flow from losses in the orifice can be defined in terms of an empirically determined discharge coefficient (CQ) representing the relationship between the flow rate and the pressure difference across the gap because of the viscous effect in the tip gap region. The simulations of the rotor/stator interaction, the prediction of partial and super cavitation on the rotor blade and their effects on the hydrodynamic performance including the thrust/torque breakdown of a water-jet pump are presented. The predicted results, including the power coefficient (P*), head coefficient (H*), pump efficiency (η), thrust and torque coefficients (KT and KQ), as well as the cavity patterns are compared and validated against the experimental data from a series of on the ONR AxWJ-2 pump at NSWCCD. / text
67

LOW-TEMPERATURE THERMOCHRONOLOGY OF THE LARAMIDE RANGES AND EASTWARD TRANSLATION OF SHORTENING IN THE SEVIER BELT, WYOMING, UTAH AND MONTANA

Peyton, Sara Lynn January 2009 (has links)
This dissertation contains two studies that investigate the Mesozoic and Cenozoic tectonics of the western USA. The first study investigates shortening in the Sevier thrust belt of northeast Utah and southwest Wyoming. Cross section restoration suggests that there was ∼8-14 km of pre-Absaroka-thrust shortening above the Jurassic Preuss salt detachment (PSD), but not below it, in the hanging wall of the Absaroka thrust. Reflection seismic data show that the Crawford thrust is not offset along the PSD, indicating that the additional shortening on the Absaroka plate was transferred east before main movement on the Crawford thrust. Integration of surface and subsurface geology suggests slip from the Willard or Lost Creek thrust was transferred several tens of kilometers east along the PSD between ∼102-90 Ma.The second study investigates the low-temperature thermochronology of the Laramide Ranges. We dated 91 borehole and surface samples from basement-cored uplifts of the Rocky Mountain foreland (Wind River, Beartooth, Bighorn and Laramie Ranges), and the Uncompahgre Uplift, using the apatite (U-Th)/He system. (U-Th)/He ages generally increase with increasing elevation. Most samples show age dispersion of tens to hundreds of Myr. Several samples show correlations between (U-Th)/He age and effective U concentration (eU = [U] + 0.235[Th]), indicating that radiation damage has affected (U-Th)/He age. Many surface and near-surface samples have (U-Th)/He ages that are older than apatite fission-track ages.Forward and inverse modeling using a radiation damage diffusion model showed that (U-Th)/He ages may be widely dispersed, and may be older than apatite fission-track ages within a fossil partial retention zone. Most samples, however, do not exhibit the predicted (U-Th)/He age-eU correlation. We show that the effects of grain size can obscure (U-Th)/He age-eU correlations. Best-fit thermal histories from the inversion of age-eU pairs were extrapolated to other elevations to create model age-elevation plots. "Too-old" (U-Th)/He ages that are not within a fossil partial retention zone are likely due to He implantation from high-eU phases. Inverse modeling of (U-Th)/He age data suggests that rapid exhumation within the Laramide province began earlier in the Bighorn Mountains (before ∼71 Ma) than the Beartooth Range (before ∼58 Ma).
68

Structures and metamorphism of Ptarmigan Creek area, Selwyn Range, B.C.

Forest, Richard C. January 1985 (has links)
No description available.
69

Fold-thrust belt and foreland basin system evolution of northwestern Montana

Fuentes, Facundo January 2010 (has links)
This investigation focuses on the Jurassic-Eocene sedimentary record of northwestern Montana and the geometry and kinematics of the thrust belt, in order to develop a unifying geodynamic-stratigraphic model to explain the evolution of the Cordilleran retroarc of this region. Provenance and subsidence analyses suggest the onset of a foreland basin system by Middle Jurassic time. U-Pb ages of detrital zircons and detrital modes of sandstones indicate provenance from accreted terranes and deformed miogeoclinal rocks. Subsidence commenced at ∼170 Ma and followed a sigmoidal pattern characteristic of foreland basin systems. Jurassic deposits of the Ellis Group and Morrison Formation accumulated in a back-bulge depozone. A regional unconformity/paleosol zone separates the Morrison from Cretaceous deposits. This unconformity was possible result of forebulge migration, decreased dynamic subsidence, and eustatic sea level fall. The late Barremian(?)-early Albian Kootenai Formation is the first unit in the foreland that consistently thickens westward. The subsidence curve at this time begins to show a convex-upward pattern characteristic of foredeeps. The location of thrust belt structures during the Late Jurassic and Early Cretaceous is uncertain, but provenance information indicates exhumation of the Intermontane and Omineca belts, and deformation of miogeocline strata, possibly on the western part of the Purcell anticlinorium. By Albian time, the thrust belt had propagated to the east and incorporated Proterozoic rocks of the Belt Supergroup as indicated by provenance data in the Blackleaf Formation, and by cross-cutting relationships in thrust sheets involving Belt rocks. From Late Cretaceous to early Eocene time the retroarc developed a series of thrust systems including the Moyie, Snowshoe, Libby, Pinkham, Lewis-Eldorado-Steinbach-Hoadley, the Sawtooth Range and the foothills structures. The final stage in the evolution of the compressive retroarc system is recorded by the Paleocene-early Eocene Fort Union and Wasatch Formations, which are preserved in the distal foreland. A new ∼145 Km balanced cross-section indicates ∼130 km of shortening. Cross-cutting relationships, thermochronology and geochronology suggest that most shortening along the frontal part of the thrust belt occurred between the mid-Campanian to Ypresian (∼75-52 Ma), indicating a shortening rate of ∼5.6 mm/y. Extensional orogenic collapse began during the middle Eocene.
70

Optimal Maneuvers for Distributed Aperture Imaging Systems

Fitch, Danielle 2012 August 1900 (has links)
Interest in space-borne, distributed multi-aperture interferometric systems is driven by a need for continuously sustained imaging with high resolution. Amplitude interferometry systems measure the Fourier components of the image corresponding to the wave vectors (locations in the so-called u-v plane) that are proportional to the relative positions of the apertures. Imaging to specified resolution demands measurement of the Fourier components with adequate signal-to-noise ratio over the interior of a disk in the u-v plane (the resolution disk). In this paper we concentrate on the case in which interferometric measurements are made while the apertures are changing their relative positions. This work discusses heuristic maneuvers and strategies for a system of two space-borne telescopes to cover the frequency plane while optimizing a cost function that includes both a measure of image quality and propulsive effort. The current study is motivated by previous research in which the optimization problem was formulated and the first-order necessary conditions (FONC) derived. The earlier work obtained short time horizon solutions to the FONC for various simple situations, but the complexity of the integro-differential equations for optimal maneuvering have heretofore prevented solution for an optimal maneuver for the entirety of the imaging process. In place of a direct attack on the FONC, the present work investigates various heuristic approaches to minimizing the cost function in the discretized state and discretized time domains in a hexagonal coordinate system. Using three classes of coverage rules, experimentation with a variety of maneuver strategies involving two apertures has led to a number of time-optimal or fuel-optimal solutions based on the initial conditions of the spacecraft. This thesis shows that an optimal maneuver can be determined from the starting positions of the spacecraft and that a self-spiral class of motion seems to be the most beneficial for long term strategies. Future work may focus on strategies for interferometric systems with more than two apertures and with a finer mesh of the hexagonal coordinate system.

Page generated in 0.0443 seconds