• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thyroid Hormone Metabolism in the Non-Euthyroid Porcine Fetus

Erin Kay Ison (13140777) 22 July 2022 (has links)
<p>Thyroid hormone is essential for regulating adult metabolism and proper fetal development. Under normal conditions, maternal and fetal thyroid hormones are subject to metabolism at the placenta and within fetal tissues through deiodination and sulfation to regulate fetal exposure to the bioactive hormone. Disruptions of the thyroid hormone system can result in non-thyroidal illness syndrome (NTIS), which is classified as the dysregulation of thyroid hormone homeostasis. The exact cause of the alterations in circulating thyroid hormone levels during NTIS is not well- known. In comparison, hypothyroidism results from the absence of thyroid hormone production and presents as low thyroid hormone levels.</p> <p>Porcine reproductive and respiratory syndrome virus (PRRSV) crosses the late gestation placenta and causes suppression of circulating maternal and fetal thyroid hormone. Chapter 2 investigates the potential role of thyroid hormone metabolism in this disruption. Pregnant gilts were challenged with PRRSV2 (n=22) or sham inoculated (n=5) at gestation day 85. Samples were collected on day 106, and viral load was assessed in fetal serum and thymus. From the entire fetal population, three distinct subsets of fetuses representing biological extremes were identified, including uninfected with no detectable viral load (UNIF), high viral load viable (HV-VIA), or high viral load with severe meconium staining (HV-MEC). In addition, control fetuses from sham inoculated gilts (CON) were used as a reference group. Samples of fetal liver, kidney, and the corresponding fetal placenta and maternal endometrium for n=10 fetuses per group were then used to evaluate gene expression. A total of 11 genes associated with thyroid hormone metabolism including deiodinases (DIO1,2,3), sulfotransferases (SULT1A3,1B1,1C2,1E1,2A1), sulfatase (STS), and solute carriers (SLC16A2,16A10) were quantified using absolute quantification qPCR. Evidence of fetal decompensation was observed within the high viral fetuses in the form of decreased DIO1 expression within the fetal liver and increased DIO3 expression in both components of the placenta. Circulating levels of T4 and inactive thyroid hormone metabolites, reverse-triiodothyronine (rT3) and two diiodothyronines (3,5-T2 and 3,3’-T2), were measured in fetal serum. While T4 was depressed, no change was observed in circulating rT3 levels, and neither T2 metabolite reached the lower detection limit. This may suggest that alterations in thyroid hormone metabolism generate a localized effect on hormone metabolites in the respective tissues.</p> <p>Alternatively, the low levels of available T3 and T4 limit the production of downstream metabolites to be found in serum.</p> <p>The cause-and-effect relationship between PRRSV infection, fetal thyroid disruption, and the effects on fetal thyroid hormone metabolism are unclear. Therefore, Chapter 3 developed a non-pathogenic model using methimazole (MMI) to induce hypothyroidism in the late gestation fetus and evaluate the impact on fetal development and thyroid hormone metabolism. Pregnant gilts were either treated with oral methimazole or equivalent sham from gestation day 85-106 (n=4/group), followed by classification of all fetuses as live, live but meconium stained, or dead. Fetuses exposed to MMI in-utero were notably hypothyroid with significantly suppressed serum T3 and T4 and histological evidence of goiter. Surprisingly, fetuses from MMI-treated dams were substantially larger but appeared to exhibit non-allometric growth with an increase in girth but not length. The liver, kidney, and the corresponding fetal placenta and maternal endometrium were collected from a subset of 16 fetuses per group to evaluate the relative expression of five genes associated with thyroid hormone metabolism, including three deiodinases and two solute carriers known to transport thyroid hormone. Compensatory transcription of DIO3 was observed in all tissues evaluated, suggesting increased vertical transfer of maternal thyroid hormone at the placenta and decreased breakdown of thyroid hormone within fetal organs.</p> <p>The evaluation of thyroid hormone metabolism within the fetus and within the placenta has allowed us to differentiate suppressed thyroid hormone levels of the pig fetus under pathogenic and non-pathogenic conditions. In the context of PRRSV infection, the observed decompensation of thyroid hormone metabolism would further exacerbate the hypothyroid state and is therefore consistent with NTIS. In contrast, fetuses with induced thyroid hormone suppression following maternal exposure to MMI showed compensatory thyroid hormone metabolism in the same tissues. This indicates true hypothyroidism and clearly demonstrates a fetal capacity to respond to such endocrine disruption.</p>
2

The roles of deiodinases in thyronamine biology

Piehl, Susanne 16 July 2008 (has links)
3-Jodthyronamin (3-T1AM) und Thyronamin (T0AM) sind endogene Signalmoleküle, die eine große strukturelle Ähnlichkeit zu Schilddrüsenhormonen aufweisen, allerdings die klassischen Wirkungen des aktiven Schilddrüsenhormons 3,5,3’-Trijodthyronin (T3) antagonisieren. In der vorliegenden Arbeit wurde untersucht, ob Thyronamine (TAMs) Substrate von Dejodasen (Dio1, Dio2, Dio3) sind. Die TAMs wurden mit isozymspezifischen Dio-Präparationen inkubiert. Die Dejodierungsprodukte wurden mittels Hochleistungsflüssigkeitschromatographie und Tandemmassenspektrometrie (LC-MS/MS) analysiert. Mit Präparationen der Dio1 wurden Dejodierungen von 3,3’,5’-Trijodthyronamin, 3’,5’- und 3,3’-Dijodthyronamin am phenolischen Ring sowie Dejodierungen von 3,5,3’-Trijodthyronamin und 3,5-Dijodthyronamin am Tyrosylring beobachtet. Dio2 haltige Präparationen katalysierten ebenfalls Dejodierungen von 3,3’,5’-Trijodthyronamin und 3’,5’-Dijodthyronamin am phenolischen Ring. Mit Dio3 haltigen Präparationen wurden alle TAMs mit jodiertem Tyrosylring dejodiert. In Kompetitionsversuchen inhibierten ausschließlich die TAMs, die als Substrate von Dio Isozymen identifizierten wurden, eine etablierte Dejodierungsreaktion eines bekannten Substrats. Im Gegensatz dazu interferierten TAMs, die in den LC-MS/MS Experimenten als Substrate der Dio Isozyme ausgeschlossen wurden, nicht mit der genannten etablierten Dejodierungsreaktion. Zusammenfassend wurde in der vorliegenden Arbeit gezeigt, dass TAMs Substrate aller drei Dio Isozyme sind und jedes Isozym eine eigene Substratspezifität aufweist. Diese Befunde weisen darauf hin, dass Dio Isozyme an der Biosynthese von TAMs beteiligt sein könnten. Ferner wurden die Biosynthesewege für 3-T1AM und T0AM eingegrenzt. Desweiteren gestatten die Ergebnisse neue Einblicke in die generellen strukturellen Voraussetzungen für Dio Substrate, da TAMs die bisher einzigen endogenen Dio Substrate darstellen, deren Seitenkette am Tyrosylring eine positive Ladung aufweist. / 3-iodothyronamine (3-T1AM) and thyronamine (T0AM) are novel endogenous signaling molecules that exhibit great structural similarity to thyroid hormones but apparently antagonize classical thyroid hormone (T3) actions. The present study investigated whether thyronamines (TAMs) are substrates of three Dio isozymes (Dio1, Dio2 and Dio3). TAMs were incubated with isozyme specific Dio preparations. Deiodination products were analyzed using a newly established method applying liquid chromatography and tandem mass spectrometry (LC-MS/MS). Phenolic ring deiodinations of 3,3’,5’-triiodothyronamine, 3’,5’- and 3,3’-diiodothyronamine as well as tyrosyl ring deiodinations of 3,5,3’-triiodothyronamine and 3,5-diiodothyronamine were observed with preparations containing Dio1. Preparations of Dio2 also deiodinated 3,3’,5’-triiodothyronamine and 3’,5’-diiodothyronamine at the phenolic rings. All TAMs with tyrosyl ring iodine atoms were deiodinated by Dio3 containing preparations. In functional competition assays, the newly identified TAM substrates inhibited an established iodothyronine deiodination reaction. By contrast, TAMs which had been excluded as Dio substrates in LC-MS/MS experiments, failed to show any effect in the competition assays, thus verifying the former results. In summary, all three Dio isozymes catalyzed TAM deiodination reactions with each isozyme exhibiting a unique substrate specificity. These data support a role for Dio isozymes in TAM biosynthesis and contribute to confining the biosynthetic pathways of 3-T1AM and T0AM. Furthermore, they provide new insights into the structural requirements for Dio substrates in general since TAMs represent the only endogenous Dio substrates described, so far, which possess a positively charged tyrosyl ring side chain.
3

Deiodination of Thyroid Hormones by Iodothyronine Deiodinase Mimics

Manna, Debasish January 2013 (has links) (PDF)
Thyroxine is the main secretory hormone of thyroid gland and it is produced in thyroglobulin by thyroid peroxidase/hydrogen peroxide/iodide system. After biosynthesis and secretion of thyroxine, it undergoes multiple metabolic reactions. The most important metabolic pathway is the stepwise deiodination from the inner ring or outer ring. Removal of one of the outer ring or phenolic ring iodines of biologically less active T4, leads to the formation of 3,5,3'-triiodothyronine or T3, a compound which is biologically more active. On the other hand, removal of one of the inner ring or tyrosyl ring iodines gives 3,3',5'-triiodothyronine (3,3',5'-T3 or rT3) which is a biologically inactive thyroid hormone. Three enzymes involved in this activation and inactivation pathway of thyroid hormones are known as iodothyronine deiodinases (IDs), which are dimeric integral-membrane selenoproteins. Depending upon the sequence and substrate specificity, three iodothyronine deiodinase enzymes have been identified, iodothyronine deiodinase-1 (ID-1), iodothyronine deiodinase-2 (ID-2) and iodothyronine deiodinase-3 (ID-3). ID-1 can catalyze both inner ring and outer ring deiodination of thyroid hormones whereas, ID-2 is selective to the outer ring deiodination. The type-1 and -2 deiodinases (ID-1 and ID-2) produces the biologically active hormone 3,5,3′-triiodothyronine (T3). These two enzymes also convert 3,3′,5′-triiodothyronine (reverse T3 or rT3) to 3,3′-diiodothyronine (3,3′-T2) by outer-ring deiodination (Scheme 1). The type-3 deiodinase (ID-3) catalyzes the convertion of T4 to rT3 by an inner-ring deiodination pathway. Apart from deiodination, there are several alternate pathways of thyroid hormone metabolism, which include sulfate conjugation and glucoronidation of the phenolic hydroxyl group of iodothyronines, the oxidative deamination and decarboxylation of the alanine side chain to form thyroacetic acid and thyronamines, respectively. Glucoronidation and sulfate conjugation changes the physico-chemical properties of iodothyronines dramatically. This thesis consists of five chapters. The first chapter provides a general introduction of biosynthesis of thyroid hormones and followed by deiodination by three iodothyronine deiodinase enzyme. This chapter also provides an overview of thyroid hormone transport and different transport proteins and their mode of binding with thyroid hormones. Apart from this, this chapter also provides a brief overview on other thyroid hormone metabolites. In the second chapter of the thesis, initial attempts in the development of different iodothyronine deiodinase mimics have been discussed. Goto et al have shown that the sterically hindered selenol 1 converts the thyroxine derivative 3 (N¬butyrylthyroxine methyl ester) to the corresponding triiodo derivative 4 by an outer-ring deiodination (Scheme 2). Although the reaction was carried out in organic solvent and a relatively higher temperature (50 °C) and longer reaction time (7 days) were required for about 65% deiodination, this study also provides an experimental evidence for the formation of selenenyl iodide (2) in the deiodination of a thyroxine derivative by an organoselenol. However, only one iodine was removed from the outer ring of 3, no inner ring deiodination was detected (Scheme 2). Interestingly, when compound 5 was treated with selenol 1 under similar conditions, no deiodination was observed (Scheme 3). This leads to assumption that presence of free phenolic hydroxyl group is important for the deiodinase activity. Based on this experimental observation, they proposed a mechanism which involves an enol¬keto tautomerism of the phenolic hydroxyl group. In the case of thyroxine, the outer-ring can undergo enol-keto tautomerism, whereas due to lack of free hydroxyl group, the inner ring cannot undergo similar kind of tautomerism. The enol-keto tautomerism probably makes the outer ring iodines more reactive than the inner ring iodines of thyroxine. We have developed tthe first chemmical modell for the inneer ring deioddination of TT4 and T3 by type 33 deiodinase . We have shown that naphthyl-baseed selenol 6 bearing a thhiol group in the cloose proximitty to the sellenium act aas an excelleent model foor ID-3 by selectively deiodinatting T4 andd T3 to prodduce rT3 annd 3,3'-T2, rrespectively,, under physiological relevant conditions. When 2 equuivalent of ccompound 66 was emplooyed in the assay, an almost quuantitative cconversion oof T4 to rT3 was observeed within 300 hours and there was no indicaation of the fformation off T3 or 3,3'-TT2. When the selenol group was repplaced with a thiol group in compouund 7, the ddeiodinase activity wwas decreassed. On thee other handd, when thee thiol groupp was replaaced with selenol mmoiety in commpound 8, thhe deiodinasse activity drramatically iincreased wiithout any change iin the selecttivity. Comppounds 10 and 11 havving N-methhylamino grooup were found too be more aactive than the correspponding unssubstituted ccompounds 7 and 8, respectively. However, introduction of a secondary amine adjacent to the selenol moiety into the compound 9 significantly reduces the deiodinase activity. In the third chapter synthesis, deiodinase activity and mechanism of deiodination of a series of peri-substituted naphthalene derivatives is discussed. Iodobenzene was used as halogen bond donor for the DFT calculations. From the orbital analysis it is observed that there is perfect orbital symmetry match between the HOMO of compound 8 (selenolate form) and LUMO of iodobenzene. When the selenolate form of 1-selenonaphthol interacts with iodobenzene, a halogen bonded adduct is formed. The negative charge on the selenium center decreases as it donates electron pair to the σ* orbital of C–I bond in iodobenzene and as a consequence the positive charge on the iodine center decreases (Figure 1). Addition of iodobenzene to 1-selenonaphthol led to a significant downfield shift in 77Se NMR spectrum of 1-selenonaphthol and with an increase in the concentration of iodobenzene, more downfield shift in the signal was observed. Figure 1. The charges obtained from Natural Bond Orbital (NBO) analysis for the selenolate form of (a) 1-selenonaphthol (b) iodobenzene, (c) halogen-bonded adduct On the basis of experimental end theoretical data, a mechanism for the deiodination of T4 by compound 8 is proposed. According to the mechanism, the initial interaction of one of the selenol moieties with an iodine leads to the formation of halogen bond. The transfer of electron density from selenium to the σ* orbital of the C−I bond generates a σ-hole or partial positive charge on the selenium atom, which facilitates an interaction between the halogen bonded selenium atom and the free selenol (selenolate) moiety (intermediate 12). The selenium−selenium interaction (chalcogen bond) strengthens the halogen bond, leading to a heterolytic cleavage of the C−I bond. The protonation of the resulting carbanion leads to the formation of rT3. On the other hand, the formation of an Se−Se bond produces the diselenide 13 with elimination of iodide as HI. The reductive cleavage of the Se−Se bond in compound 13 regenerates the diselenol 8 (Figure 2). In the fourth chapter deiodination of sulfated thyroid hormones is discussed. Sulfate conjugation is an important step in in the irreversible inactivation of thyroid hormones. Sulfate conjugation of the phenolic hydroxyl group stimulates the inner ring deiodination of T4 and T3 but it blocks the outer ring deiodination of T4 by ID-1. The thyroxine sulfate (T4S) undergoes faster deiodination as compared to the parent thyroid hormone T4. Only ID-1 catalyzes the deiodination of sulfated thyroid hormones. In contrast, ID-2 and ID-3 do not accept T4S and/or T3S as substrate. We have shown that iodothyronine sulfates can be readily deiodinated by synthetic deiodinase model compound 8 and its derivatives. In contrast to the inner ring-selective deiodination of T4, the synthetic compounds loses the selectivity and mediate both inner and outer-ring deiodination of T4S and outer ring deiodination of rT3S. From this study, we have also proposed that the enol-keto tautomerism is probably not required for the outer ring deiodination and the strength of halogen bonding controls the regioselective deiodination by model compounds. In the fifth chapter, the mechanism of inhibition of iodothyronine deiodinases by PTU and IAA is discussed with the help of model compounds. In the model study, it has been observed that compound 8 does not form a stable Se-I intermediate (14), which is essential for the formation of Se-S covalent bond with PTU. As a consequence, the deiodination of T4 by compound 8 is not inhibited by PTU. This study supports the proposal that ID-3 does not follow a ping-pong bi-substrate pathway for deiodination and may not form a stable E-Se-I intermediate, which is responsible for the insensitivity of ID-3 towards PTU. The biphenyl based diselenol 15 reacts with IAA and iodoacetamide to form the corresponding carboxymethylated product 17. On the other hand, compound 8 does not undergo the expected carboxymethylation by IAA and iodoacetamide, but they readily deiodinate both IAA and iodoacetamide. Based on this model study, a possible model is proposed for the insensitivity of ID-3 towards IAA. Iopanoic acid (18) is a well known radiocontrast agent and is used as adjunctive therapy with PTU and CBZ for the treatment of thyrotoxicosis.[9] We show in this chapter that iopanoic acid undergoes monodeiodination by compound 8 under physiological relevant conditions. The deiodinated products (19 and 20) from iopanoic acid are characterized by NMR spectroscopy and single crystal X-ray crystallography. It is observed that after monodeiodination, the strength of halogen bonding decreases and therefore, the monodeiodinated products do not undergo further deiodination.
4

Establishment, validation and application of immunological and LC-MS/MS-based detection methods to study the role of human aromatic L-amino acid decarboxylase as an enzyme potentially involved in thyronamine biosynthesis

Höfig, Carolin 18 December 2012 (has links)
Thyronamine (TAM) sind eine neue Molekülklasse, die endokrinologische und metabolische Prozesse miteinander vereinen. Der biologisch aktive Metabolit 3-Iod-L-Thyronamin (3-T1AM) wird durch eine kombinierte Deiodierung und Decarboxylierung von Schilddrüsenhormonen (TH) gebildet. Existierende Methoden zum Nachweis und zur Quantifizierung von 3-T1AM im menschlichen Serum sind immer noch umstritten. Auch die an der Biosynthese vermutlich beteiligte TH-Decarboxylase konnte noch nicht identifiziert werden. Für die Identifizierung und Quantifizierung von TH und TAM Profilen wurde die Flüssigchromatographie-Tandem-Massenspektrometrie (LC-MS/MS) verwendet. In der bisherigen präanalytischen Aufarbeitung liefern weder Flüssig-Flüssig- noch Festphasenextraktionen reproduzierbare Ergebnisse des 3-T1AM-Gehalts im Serum. Mit der Entwicklung eines spezifischen Extraktionsverfahrens und nachfolgender Detektion mittels LC-MS/MS gelang der gleichzeitige Nachweis der häufigsten TH im humanen Serum. Parallel dazu wurden monoklonale Antikörper gegen 3-T1AM entwickelt, auf deren Basis ein quantitativer 3-T1AM Chemilumineszenz-Immunoassay entstand. Ergebnisse aus klinischen Kollektiven zeigen, dass 3-T1AM im Serum im nM Konzentrationsbereich vorkommt und dass 3-T1AM bei Patienten außerhalb der Schilddrüse produziert wird. Viele Forscher gehen davon aus, dass die aromatische L-Aminosäure Decarboxylase (AADC) die Synthese von TAM über Decarboxylierung von TH katalysiert. Diese Hypothese wurde durch Inkubation von rekombinanter humaner AADC mit TH getestet. In keinem der Experimente konnte AADC die Decarboxylierung von TH katalysieren. Zusammenfassend ist die Bestimmung von 3-T1AM im Serum mittels LC-MS/MS aufgrund der nicht reproduzierbaren präanalytischen Probenaufbereitung problematisch. In dieser Arbeit wird der erste MAb-basierte 3-T1AM assay vorgestellt, der 3-T1AM zuverlässig in humanem Serum quantifiziert. Die AADC ist wahrscheinlich nicht an der Biosynthese von TAM beteiligt. / Thyronamines (TAM) are a new class of molecules linking endocrinology and metabolism. Combined deiodination and decarboxylation of thyroid hormones (TH) generates a biologically active ‘cooling’ metabolite, 3-iodo-L-thyronamine (3-T1AM).. It remains controversial, which methods are able or not to reliably detect 3-T1AM in human serum, and the presumed TH decarboxylase is still elusive. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used for the simultane-ous identification and quantification of TH and TAM profiles in biological samples. Several preanalytical methods were tested for complete extraction of 3-T1AM in human serum. Thus far, neither liquid-liquid nor solid-phase extraction methods allowed reproducible extraction of 3-T1AM from human serum samples in the preanalytical sample workup. Nevertheless, a rapid and sensitive extraction procedure was developed for detection of the major TH by LC-MS/MS in a single human serum sample. In parallel, monoclonal antibodies (MAb) targeting 3-T1AM were developed and characterized, and a highly specific quantitative 3-T1AM MAb-based chemiluminescence immunoassay was developed. Studies in clinical cohorts provide evidence that 3-T1AM is present in human serum in the nM concentration range and that 3-T1AM is produced extrathyroidally. Many researchers have reasoned that the aromatic L-amino acid decarboxylase (AADC) mediates TAM synthesis via decarboxylation of TH. This hypothesis was tested by incubating recombinant human AADC with several TH. In all tested conditions, AADC failed to catalyze the decarboxylation of TH. These in vitro observations are supported by the finding that 3-T1AM is also present in plasma samples of patients with AADC deficiency. In summary, 3-T1AM detection in serum using LC-MS/MS encounters preanalytical problems. The first MAb-based 3-T1AM CLIA is presented, which reliably quantifies 3-T1AM in human serum. AADC is likely not involved in TAM biosynthesis.

Page generated in 0.2584 seconds