• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Causality in quantum physics, the ensemble of beginnings of time, and the dispersion relations of wave function

Sato, Yoshihiro, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2008. / Vita. Includes bibliographical references.
2

Simulation of wireless communications in underground tunnels

He, Shabai January 2012 (has links)
The new released 4G standard wireless communication reminds us that higher transmission data rate and more reliable service are required urgently. However, to fulfill the demand can face problems in a complex environment like mines. In this thesis, characterization of underground tunnel mines with the idea of combating intersymbol interference effect is presented.            Ray tracing simulation method is applied to characterize channel impulse response in different positions of an underground tunnel. From this channel impulse response, we can obtain how intersymbol interference affects different wireless systems. Intersymbol interference occurs due to multipath propagation of time dispersion channel.           Adaptive Equalization is the most effective way to compensate intersymbol interference. Adaptive filter adapts filter coefficients to compensate the channel so that the combination of the filter and channel offers a flat frequency response and linear phase. The bit error rate performance without using adaptive equalization is compared with using equalizer. Moreover, adaptive equalization approaches using RLS and LMS algorithms are compared with each other. The tradeoff between convergence rate, computation cost instability and ensemble averaged minimum squared errors are analyzed to determine how to select the optimum adaptive equalizer.
3

Wideband Propagation Measurement Results, Simulation Models, and Processing Techniques for a Sliding Correlator Measurement System

Newhall, William George 12 December 1997 (has links)
Radio wave propagation measurements provide a way to accurately and reliably characterize environments to assist in the development and optimization of wireless communication systems. As digital radio systems occupy wider bandwidths and use multipath signal combining to enhance quality of service, knowledge of time dispersion and the multipath structure of radio channels become increasingly important. The wideband measurement system presented herein provides a practical means to precisely measure the delays and strengths of individual multipath components which arrive at a radio receiver. Presented in this Thesis are fundamental theory, practical implementation, and simulation models for a sliding correlator measurement system. The sliding correlator technique is explained in detail and large-scale measurement survey is presented. Techniques for statistically quantifying the characteristics of propagation using the sliding correlator measurements are presented and compared. The development of simulations of the sliding correlator system is described, and simulation results are used to test conventional and newly developed post-processing algorithms. This Thesis presents a practical view of the sliding correlator measurement system, but its foundations are rooted in the theoretical results which are explained and derived herein. Propagation researchers and students in the wireless communication field may find this work and the cited references useful for continued study of wideband propagation measurements or for application of the sliding correlator system as a wideband measurement solution. / Master of Science

Page generated in 0.0893 seconds