Spelling suggestions: "subject:"timedomain astronomy"" "subject:"bidomain astronomy""
1 |
Project PANOPTES: a citizen-scientist exoplanet transit survey using commercial digital camerasGee, Wilfred T., Guyon, Olivier, Walawender, Josh, Jovanovic, Nemanja, Boucher, Luc 09 August 2016 (has links)
Project PANOPTES (http://www.projectranoptes.org) is aimed at establishing a collaboration between professional astronomers, citizen scientists and schools to discover a large number of exoplanets with the transit technique. We have developed digital camera based imaging units to cover large parts of the sky and look for exoplanet transits. Each unit costs approximately $5000 USD and runs automatically every night. By using low-cost, commercial digital single-lens reflex (DSLR) cameras, we have developed a uniquely cost-efficient system for wide field astronomical imaging, offering approximately two orders of magnitude better etendue per unit of cost than professional wide-field surveys. Both science and outreach, our vision is to have thousands of these units built by schools and citizen scientists gathering data, making this project the most productive exoplanet discovery machine in the world.
|
2 |
Simulation Study on an Electron-Tracking Compton Camera for Deep Gamma-ray Burst Search / 電子飛跡検出型コンプトンカメラシミュレーションによるガンマ線バースト深探査Sawano, Tatsuya 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第20172号 / 理博第4257号 / 新制||理||1612(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 谷森 達, 教授 永江 知文, 教授 鶴 剛 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
3 |
Tackling the Nature of a White Dwarf Progenitor through Prompt Follow-up Observations of Novae: A Case for V1405 Cas (= Nova Cassiopeiae 2021) as a Low-mass ONeMg White Dwarf / 新星の即時観測によって迫る白色矮星の性質: 低質量酸素ネオンマグネシウム白色矮星としてのカシオペヤ座 V1405星 (= 2021年カシオペヤ座新星)Taguchi, Kenta 25 March 2024 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第25118号 / 理博第5025号 / 新制||理||1716(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 前田 啓一, 准教授 野上 大作, 講師 LEEShiu Hang / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
|
4 |
The discovery and characterization of variable stars in the All-Sky Automated Survey for SuperNovaeJayasinghe Arachchilage, Tharindu Keshawa 27 September 2022 (has links)
No description available.
|
5 |
Spectroscopy and Photometry of Scattered Light Echoes from SupernovaeSinnott, Brendan 10 1900 (has links)
<p>We present an observational protocol to observe and interpret asymmetries in stellar explosions using scattered light echoes. Spectroscopy of multiple light echoes are used to observe single astronomical sources from multiple viewing angles, allowing for direct observations of explosion asymmetries, when they exist. We present asymmetry detections for two famous historical supernovae: the ~25-year-old SN 1987A and the ~330-year-old Cassiopeia A. In both supernovae we find asymmetries in the first few hundred days of the explosion that appear to be correlated with the geometry of Fe-rich material in the remnant states.</p> <p>Spectroscopy of SN 1987A light echoes reveals a variation in the Hα line profile as a function of echo azimuth, with maximum asymmetry at position angles 16◦ and 186◦, in agreement with the major-axis of the elongated remnant ejecta. We interpret our asymmetry detection as evidence for a two-sided distribution of high-velocity 56Ni in the first few hundred days of SN 1987A, with the most dominant asymmetry redshifted in the south. For Cassiopeia A, we find evidence for a ~4000 km/s velocity excess in the first hundred days of the explosion, roughly aligned with an Fe-rich outflow in the supernova remnant and approximately opposite in direction to the motion of the compact object.</p> <p>Core-collapse supernovae have not yet been successfully modelled despite decades of progress in input physics and computing capability. Despite the significance of thermonuclear Type Ia supernovae to cosmology, the progenitor systems and explosion details also remain unclear. Both observational and theoretical work suggest that non-spherical effects are not only common in supernovae, but may in fact aid in generating successful explosions. In addition to offering a new technique for observing supernova asymmetries, spectroscopy of scattered light echoes allows a direct causal connection to be made between stellar explosions and their observed remnant states.</p> / Doctor of Philosophy (PhD)
|
6 |
A Close Look at the Transient Sky in a Neighbouring GalaxyTikare, Kiran January 2020 (has links)
Study of the time variable sources and phenomena in Astrophysics provides us with important insights into the stellar evolution, galactic evolution, stellar population studies and cosmological studies such as number density of dark massive objects. Study of these sources and phenomena forms the basis of Time Domain surveys, where the telescopes while scanning the sky regularly for a period of time provides us with positional and temporal data of various Astrophysical sources and phenomena happening in the Universe. Our vantage point within the Milky Way galaxy greatly limits studying our galaxy in its entirety. In such a scenario our nearest neighbour The Andromeda galaxy (M31) proves to be an excellent choice as its proximity and inclination allows us to resolve millions of stars using space based telescopes. Zwicky Transient Facility (ZTF) is a new optical time domain survey at Palomar Observatory, which has collected data in the direction of M31 for over 6 months using multiple filters. This Thesis involves exploitation of this rich data set. Stars in M31 are not resolved in ZTF as it is a ground based facility. This requires us to use the large public catalogue of stars observed with Hubble Space Telescope (HST): The Panchromatic Hubble Andromeda Treasury (PHAT). The PHAT catalogue provides us with stellar coordinates and observed brightness for millions of resolved stars in the direction of the M31 in multiple filters. Processing of the large volumes of data generated by the time domain surveys, requires us to develop new data processing pipelines and utilize statistical techniques for determining various statistical features of the data and using machine learning algorithms to classify the data into different categories. End result of such processing of the data is the astronomical catalogues of various astrophysical sources and phenomena and their light curves. In this thesis we have developed a data processing and analysis pipeline based on Forced Aperture Photometry Technique. Since the stars are not resolved in ZTF, we performed photometry at pixel level. Only small portion of the ZTF dataset has been analyzed and photometric light curves have been generated for few interesting sources. In our preliminary investigations we have used a Machine Learning Algorithm to classify the resulting time series data into different categories. We also performed cross comparison with data from other studies in the region of the Andromeda galaxy.
|
Page generated in 0.0445 seconds