• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

THREE-DIMENSIONAL DISTRIBUTION OF EJECTA IN SUPERNOVA 1987A AT 10,000 DAYS

Larsson, J., Fransson, C., Spyromilio, J., Leibundgut, B., Challis, P., Chevalier, R. A., France, K., Jerkstrand, A., Kirshner, R. P., Lundqvist, P., Matsuura, M., McCray, R., Smith, N., Sollerman, J., Garnavich, P., Heng, K., Lawrence, S., Mattila, S., Migotto, K., Sonneborn, G., Taddia, F., Wheeler, J. C. 13 December 2016 (has links)
Due to its proximity, SN. 1987A offers a unique opportunity to directly observe the geometry of a stellar explosion as it unfolds. Here we present spectral and imaging observations of SN. 1987A obtained similar to 10,000 days after the explosion with HST/STIS and VLT/SINFONI at optical and near-infrared wavelengths. These observations allow us to produce the most detailed 3D map of Ha to date, the first 3D maps for [Ca II] lambda lambda 7292, 7324, [O I] lambda lambda 6300, 6364, and Mg. II lambda lambda 9218, 9244, as well as new maps for [Si I]+[Fe II] 1.644 mu m and He I 2.058 mu m. A comparison with previous observations shows that the [Si I]+[Fe II] flux and morphology have not changed significantly during the past ten years, providing evidence that this line is powered by Ti-44. The time evolution of Ha shows that it is predominantly powered by X-rays from the ring, in agreement with previous findings. All lines that have sufficient signal show a similar large-scale 3D structure, with a north-south asymmetry that resembles a broken dipole. This structure correlates with early observations of asymmetries, showing that there is a global asymmetry that extends from the inner core to the outer envelope. On smaller scales, the two brightest lines, Ha and [Si I]+[Fe II] 1.644 mu m, show substructures at the level of similar to 200-1000 km s(-1) and clear differences in their 3D geometries. We discuss these results in the context of explosion models and the properties of dust in the ejecta.
2

Nucleosynthesis Constraints on the Energy Growth Timescale of a Core-collapse Supernova Explosion / 重力崩壊型超新星の爆発タイムスケールについて 元素合成からの制約

Sawada, Ryo 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第22249号 / 理博第4563号 / 新制||理||1655(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)准教授 前田 啓一, 講師 LEE Shiu Hang, 教授 長田 哲也 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
3

The rebirth of Supernova 1987A : a study of the ejecta-ring collision

Gröningsson, Per January 2008 (has links)
Supernovae are some of the most energetic phenomena in the Universe and they have throughout history fascinated people as they appeared as new stars in the sky. Supernova (SN) 1987A exploded in the nearby satellite galaxy, the Large Magellanic Cloud (LMC), at a distance of only 168,000 light years. The proximity of SN 1987A offers a unique opportunity to study the medium surrounding the supernova in great detail. Powered by the dynamical interaction of the ejecta with the inner circumstellar ring, SN 1987A is dramatically evolving at all wavelengths on time scales less than a year. This makes SN 1987A a great ``laboratory'' for studies of shock physics. Repeated observations of the ejecta-ring collision have been carried out using the UVES echelle spectrograph at VLT. This thesis covers seven epochs of high resolution spectra taken between October 1999 and November 2007. Three different emission line components are identified from the spectra. A narrow (~10 km/s) velocity component emerges from the unshocked ring. An intermediate (~250 km/s) component arises in the shocked ring, and a broad component extending to ~15,000 km/s comes from the reverse shock. Thanks to the high spectral resolution of UVES, it has been possible to separate the shocked from the unshocked ring emission. For the unshocked gas, ionization stages from neutral up to Ne V and Fe VII were found. The line fluxes of the low-ionization lines decline during the period of the observations. However, the fluxes of the [O III] and [Ne III] lines appear to increase and this is found to be consistent with the heating of the pre-shock gas by X-rays from the shock interactions. The line emission from the ejecta-ring collision increases rapidly as more gas is swept up by the shocks. This emission comes from ions with a range of ionization stages (e.g., Fe II-XIV). The low-ionization lines show an increase in their line widths which is consistent with that these lines originate from radiative shocks. The high-ionization line profiles (Fe X-XIV) initially show larger spectral widths, which indicates that at least a fraction of the emission comes from non-radiative shocks.
4

Spectroscopy and Photometry of Scattered Light Echoes from Supernovae

Sinnott, Brendan 10 1900 (has links)
<p>We present an observational protocol to observe and interpret asymmetries in stellar explosions using scattered light echoes. Spectroscopy of multiple light echoes are used to observe single astronomical sources from multiple viewing angles, allowing for direct observations of explosion asymmetries, when they exist. We present asymmetry detections for two famous historical supernovae: the ~25-year-old SN 1987A and the ~330-year-old Cassiopeia A. In both supernovae we find asymmetries in the first few hundred days of the explosion that appear to be correlated with the geometry of Fe-rich material in the remnant states.</p> <p>Spectroscopy of SN 1987A light echoes reveals a variation in the Hα line profile as a function of echo azimuth, with maximum asymmetry at position angles 16◦ and 186◦, in agreement with the major-axis of the elongated remnant ejecta. We interpret our asymmetry detection as evidence for a two-sided distribution of high-velocity 56Ni in the first few hundred days of SN 1987A, with the most dominant asymmetry redshifted in the south. For Cassiopeia A, we find evidence for a ~4000 km/s velocity excess in the first hundred days of the explosion, roughly aligned with an Fe-rich outflow in the supernova remnant and approximately opposite in direction to the motion of the compact object.</p> <p>Core-collapse supernovae have not yet been successfully modelled despite decades of progress in input physics and computing capability. Despite the significance of thermonuclear Type Ia supernovae to cosmology, the progenitor systems and explosion details also remain unclear. Both observational and theoretical work suggest that non-spherical effects are not only common in supernovae, but may in fact aid in generating successful explosions. In addition to offering a new technique for observing supernova asymmetries, spectroscopy of scattered light echoes allows a direct causal connection to be made between stellar explosions and their observed remnant states.</p> / Doctor of Philosophy (PhD)

Page generated in 0.0234 seconds