• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An automated validation of a cleared-out storage unit during move-out : A RoomPlan solution integrated with image classification

Rimhagen, Elsa January 2024 (has links)
The efficient management of storage units requires a reliable and streamlined move-out process. Manual validation methods are resource intensive. Therefore, the task is to introduce an automated approach that capitalises on modern smartphone capabilities to improve the move-out validation process. Hence, the purpose of this thesis project. The proposed solution is a Proof of Concept (POC) application that utilises the Light Detection and Ranging (LiDAR) sensor and camera of a modern iPhone. This is performed through RoomPlan, a framework developed for real-time, indoor room scanning. It generates a 3D model of the room with its key characteristics. Moreover, to increase the number detectable object categories, the solution is integrated with the image classifier Tiny YOLOv3. The solution is evaluated through a quantitative evaluation in a storage unit. It shows that the application can validate whether the storage unit is empty or not in all the completed scans. However, an improvement of the object detecition is needed for the solution to work in a commercial case. Therefore, further work includes investigation of the possibilities to expand the object categories within the image classifier or creating a similar detection pipeline as RoomPlan adjusted for this specific case. The usage of LiDAR sensors indicated to be a stable object detector and a successful tool for the assignment. In contrast, the image classifier had lower detection accuracy in the storage unit.
2

Detekce dopravních značek a semaforů / Detection of Traffic Signs and Lights

Oškera, Jan January 2020 (has links)
The thesis focuses on modern methods of traffic sign detection and traffic lights detection directly in traffic and with use of back analysis. The main subject is convolutional neural networks (CNN). The solution is using convolutional neural networks of YOLO type. The main goal of this thesis is to achieve the greatest possible optimization of speed and accuracy of models. Examines suitable datasets. A number of datasets are used for training and testing. These are composed of real and synthetic data sets. For training and testing, the data were preprocessed using the Yolo mark tool. The training of the model was carried out at a computer center belonging to the virtual organization MetaCentrum VO. Due to the quantifiable evaluation of the detector quality, a program was created statistically and graphically showing its success with use of ROC curve and evaluation protocol COCO. In this thesis I created a model that achieved a success average rate of up to 81 %. The thesis shows the best choice of threshold across versions, sizes and IoU. Extension for mobile phones in TensorFlow Lite and Flutter have also been created.

Page generated in 0.0471 seconds