Spelling suggestions: "subject:"tipo gap""
11 |
Measurements of the Tip-gap Turbulent Flow Structure in a Low-speed Compressor CascadeTang, Genglin 18 May 2004 (has links)
This dissertation presents results from a thorough study of the tip-gap turbulent flow structure in a low-speed linear compressor cascade wind tunnel at Virginia Tech that includes a moving belt system to simulate the relative motion between the tip and the casing. The endwall pressure measurements and the surface oil flow visualizations were made on a stationary endwall to obtain the flow features and to determine the measurement profiles of interest. A custom-made miniature 3-orthogonal-velocity-component fiber-optic laser-Doppler velocimetry (LDV) system was used to measure all three components of velocity within a 50 mm spherical measurement volume within the gap between the endwall and the blade tip, mainly for the stationary wall with 1.65% and 3.30% tip gaps as well as some initial experiments for the moving wall.
Since all of the vorticity in a flow originates from the surfaces under the action of strong pressure gradient, it was very important to measure the nearest-wall flow on the endwall and around the blade tip. The surface skin friction velocity was measured by using viscous sublayer velocity profiles, which verified the presence of an intense lateral shear layer that was observed from surface oil flow visualizations. All second- and third-order turbulence quantities were measured to provide detailed data for any parallel CFD efforts.
The most complete data sets were acquired for 1.65% and 3.30% tip gap/chord ratios in a low-speed linear compressor cascade. This study found that tip gap flows are complex pressure-driven, unsteady three-dimensional turbulent flows. The crossflow velocity normal to the blade chord is nearly uniform in the mid tip-gap and changes substantially from the pressure to suction side. The crossflow velocity relies on the local tip pressure loading that is different from the mid-span pressure loading because of tip leakage vortex influence. The tip gap flow is highly skewed three-dimensional flow throughout the full gap. Normalized circulation within the tip gap is independent of the gap size. The tip gap flow interacts with the primary flow, separates from the endwall, and rolls up on the suction side to form the tip leakage vortex. The tip leakage vortex is unsteady from the observation of the TKE transport vector and oil flow visualizations. The reattachment of tip separation vortex on the pressure side strongly depends on the blade thickness-to-gap height ratio after the origin of tip leakage vortex but is weakly related to it before the origin of tip leakage vortex for a moderate tip gap. Other than the nearest endwall and blade tip regions, the TKE does not vary much in tip gap. The tip leakage vortex produces high turbulence intensities. The tip gap flow correlations of streamwise and wall normal velocity fluctuations decrease significantly from the leading edge to the trailing edge of the blade due to flow skewing. The tip gap flow is a strongly anisotropic turbulent flow. Rapid distortion ideas can not apply to it. A turbulence model based on stress transport equations and experimental data is necessary to reflect the tip gap flow physics. For the moving endwall, relative motion skews the inner region flow and is decorrelated with the outer layer flow. Hence, the TKE and correlations of streamwise and wall normal velocity fluctuations decrease. / Ph. D.
|
12 |
Near Wall Investigation of Three Dimensional Turbulent Boundary LayersKuhl, David Derieg 22 August 2001 (has links)
This report documents the experimental study for four different three-dimensional turbulent flows. The investigation focuses on near wall measurements in these flows. Several experimental techniques are used in the studies; however, the bulk of the investigation focuses on a three-orthogonal-velocity-component fiber-optic laser Doppler anemometer (3D-LDA) system. The control volume of the 3D-LDA is on the order of 50 micro-meter in size, or a y<sup>+</sup> distance of around 2.3 units (using average values of U<sub>τ</sub> and ν from the experiment). An auxiliary small boundary layer wind tunnel (auxiliary tunnel) and a low speed linear compressor cascade wind tunnel (cascade tunnel) are utilized in this study. One of four flow experiments is done in the auxiliary tunnel the other three are in the cascade tunnel. The first three-dimensional turbulent flow is a vortical flow created by two half-delta wing vortex generators. Near wall secondary flow features are found. The second flow is an investigation of the first quarter chord tip gap flow in the cascade tunnel. Strong three-dimensional phenomena are found. The third flow investigated is the inflow to the compressor cascade with the moving wall. The experiment records shear layer interaction between the upstream flow and moving wall. Finally the fourth flow investigated is the inflow to the compressor cascade with the moving wall with half-delta wing vortex generators attached. Phase-averaged data reveal asymmetrical vortex structures just downstream of the vortex generators. This is the first time any near wall data has been taken on any of these flows. / Master of Science
|
13 |
Turbulence and Sound Generated by a Rotor Operating Near a WallMurray, Henry Hall IV 08 June 2016 (has links)
Acoustic and aerodynamic measurements have been carried out on a rotor operating in a planar turbulent boundary layer near a wall for a variety of thrust conditions and yaw angles with respect to the inflow. At the highest thrust condition a strong flow reversal in the wall-rotor tip gap was observed. Average velocity fields filtered by the angular position of the rotor show that the flow reversal is fed by jets of fluid that tend to form below the blade as it passes by the wall. Instantaneous velocity measurements show the presence of strong vortices in the tip gap. These vortices were characterized and found to be both stronger and more numerous on the downstroke side of the tip gap. Additionally, vortices with the same handedness as the bound circulation in the blade were more numerous and only located on the downstroke side of the tip gap. Those with the opposite handedness were found to be only located on the upstroke side. Unexpectedly strong far-field acoustic response at the blade passage frequency at this highest thrust condition and is believed to be due to an interaction of the blade tip with these vortices. At moderate thrust, when the rotor was yawed toward the downstroke side the far field acoustic response at the blade passage frequency was found to increase. The opposite was true as it was yawed toward the upstroke side. At the highest thrust, however the unyawed rotor had the strongest blade passage frequency response which is believed to be due to stronger vortex-tip interaction in this case. / Master of Science
|
14 |
Effects of Rotation on the Flow Structure in a Compressor CascadeVentosa-Molina, Jordi, Koppe, Björn, Lange, Martin, Mailach, Ronald, Fröhlich, Jochen 08 May 2023 (has links)
In turbomachines, rotors and stators differ by the rotation of the former. Hence, half of each stage is directly influenced by rotation effects. The influence of rotation on the flow structure and its impact on the performance is studied through wall-resolving large Eddy simulations of a rotor with large relative tip gap size. The simulations are performed in a rotating frame with rotation accounted for through a Coriolis force term. In a first step, experimental results are used to provide validation. The main part of the study is the comparison of the results from two simulations, one representing the rotating configuration and one with the Coriolis force removed, without any other change. This setup allows a very clean assessment of the influence of rotation. The turbulence-resolving approach ensures that the turbulent flow features are well represented. The results show a significant impact of rotation on the secondary flow. In the tip region, the tip leakage vortex is enlarged and destabilized. Inside the tip gap, the flow is altered as well, with uniformization in the rotating case. At the blade midspan, no significant effects are observed on the suction side, while an earlier transition to turbulence is found on the pressure side. Near the hub, rotation effects are shown to reduce the corner separation significantly.
|
15 |
Aero-thermal performance of transonic high-pressure turbine blade tipsO'Dowd, Devin Owen January 2010 (has links)
No description available.
|
Page generated in 0.071 seconds