Spelling suggestions: "subject:"tipo jet""
1 |
The Interaction of Ice Sheets with the Ocean and AtmosphereHay, Carling 12 December 2012 (has links)
A rapidly melting ice sheet produces a distinctive geometry of sea level (SL) change. Thus, a network of SL observations may, in principle, be used to infer sources of meltwater flux. We outline a new method, based on a Kalman smoother, for using tide gauge observations to estimate the individual sources of global SL change. The Kalman smoother technique iteratively calculates the maximum likelihood estimate of Greenland and West Antarctic ice sheet melt rates at each time step, and it allows for data gaps while also permitting the estimation of non-linear trends. We have also implemented a fixed multi-model Kalman filter that allows us to rigorously account for additional contributions to SL changes, such as glacial isostatic adjustment and thermal expansion. We report on a series of detection experiments based on synthetic SL data that explore the feasibility of extracting source information from SL records before applying the new methodology to historical tide gauge records. In the historical tide gauge study we infer a global mean SL rise of ~1.5 ± 0.5 mm/yr up to 1970, followed by an acceleration to a rate of ~2.0 ± 0.5 mm/yr in 2008.
In addition to its connection to SL, Greenland and its large ice sheet act as a barrier to storm systems traversing the North Atlantic. As a result of the interaction with Greenland, low-pressure systems located in the Irminger Sea, between Iceland and Greenland, often produce strong low-level winds. Through a combination of modeling and the analysis of rare in-situ observations, we explore the evolution of a lee cyclone that resulted in three high-speed-wind events in November 2004. Understanding Greenland’s role in these events is critical in our understanding of local weather in this region.
|
2 |
A Possibilistic Approach to Rotorcraft Design through a Multi-Objective Evolutionary AlgorithmChae, Han Gil 24 August 2006 (has links)
A method to find solutions to multi-objective design problems that involve poor information available was proposed. The method quantified the designers intuition in a systematic manner, and utilized it to approximate inaccurate and/or vague numbers. In the context of possibility theory, uncertain values were expressed through possibility distributions, i.e. fuzzy membership functions. Based on the membership functions of the value, levels of confidence of the solutions to multi-objective problems were defined through the notions of possibility and necessity. An evolutionary algorithm was modified to find sets of solutions that allow certain levels of confidence instead of the crisp sets of the solutions. The method was applied to a design problem of the gyrodyne configuration and sets of the solutions of the specified possibility and necessity were found. The results of the design problem and the suggestions for future research were discussed.
|
3 |
The Interaction of Ice Sheets with the Ocean and AtmosphereHay, Carling 12 December 2012 (has links)
A rapidly melting ice sheet produces a distinctive geometry of sea level (SL) change. Thus, a network of SL observations may, in principle, be used to infer sources of meltwater flux. We outline a new method, based on a Kalman smoother, for using tide gauge observations to estimate the individual sources of global SL change. The Kalman smoother technique iteratively calculates the maximum likelihood estimate of Greenland and West Antarctic ice sheet melt rates at each time step, and it allows for data gaps while also permitting the estimation of non-linear trends. We have also implemented a fixed multi-model Kalman filter that allows us to rigorously account for additional contributions to SL changes, such as glacial isostatic adjustment and thermal expansion. We report on a series of detection experiments based on synthetic SL data that explore the feasibility of extracting source information from SL records before applying the new methodology to historical tide gauge records. In the historical tide gauge study we infer a global mean SL rise of ~1.5 ± 0.5 mm/yr up to 1970, followed by an acceleration to a rate of ~2.0 ± 0.5 mm/yr in 2008.
In addition to its connection to SL, Greenland and its large ice sheet act as a barrier to storm systems traversing the North Atlantic. As a result of the interaction with Greenland, low-pressure systems located in the Irminger Sea, between Iceland and Greenland, often produce strong low-level winds. Through a combination of modeling and the analysis of rare in-situ observations, we explore the evolution of a lee cyclone that resulted in three high-speed-wind events in November 2004. Understanding Greenland’s role in these events is critical in our understanding of local weather in this region.
|
Page generated in 0.0613 seconds